BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 27479046)

  • 1. Highly sensitive detection of dipicolinic acid with a water-dispersible terbium-metal organic framework.
    Bhardwaj N; Bhardwaj S; Mehta J; Kim KH; Deep A
    Biosens Bioelectron; 2016 Dec; 86():799-804. PubMed ID: 27479046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework.
    Zhang Y; Li B; Ma H; Zhang L; Zheng Y
    Biosens Bioelectron; 2016 Nov; 85():287-293. PubMed ID: 27183278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescent detection of dipicolinic acid as a biomarker of bacterial spores using lanthanide-chelated gold nanoparticles.
    Donmez M; Yilmaz MD; Kilbas B
    J Hazard Mater; 2017 Feb; 324(Pt B):593-598. PubMed ID: 27852519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BSA-AuNPs@Tb-AMP metal-organic frameworks for ratiometric fluorescence detection of DPA and Hg
    Cai K; Zeng M; Liu F; Liu N; Huang Z; Song Y; Wang L
    Luminescence; 2017 Nov; 32(7):1277-1282. PubMed ID: 28569414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A weakly luminescent Tb-MOF-based "turn-on" sensor for the highly selective and sensitive sensing of an anthrax biomarker.
    Zhao XY; Yang H; Zhao WY; Wang J; Yang QS
    Dalton Trans; 2021 Feb; 50(4):1300-1306. PubMed ID: 33393945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-emission of silicon nanoparticles encapsulated lanthanide-based metal-organic frameworks for ratiometric fluorescence detection of bacterial spores.
    Yang D; Mei S; Wen Z; Wei X; Cui Z; Yang B; Wei C; Qiu Y; Li M; Li H; Zhang W; Xie F; Wang L; Guo R
    Mikrochim Acta; 2020 Nov; 187(12):666. PubMed ID: 33206253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mid-ultraviolet light-emitting diode detects dipicolinic acid.
    Li Q; Dasgupta PK; Temkin H; Crawford MH; Fischer AJ; Allerman AA; Bogart KH; Lee SR
    Appl Spectrosc; 2004 Nov; 58(11):1360-3. PubMed ID: 15606942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent detection of dipicolinic acid as a biomarker in bacterial spores employing terbium ion-coordinated magnetite nanoparticles.
    Koo TM; Ko MJ; Park BC; Kim MS; Kim YK
    J Hazard Mater; 2021 Apr; 408():124870. PubMed ID: 33387720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly selective and multicolor ultrasensitive assay of dipicolinic acid: The integration of terbium(III) and gold nanocluster.
    Bi N; Zhang YH; Hu MH; Xu J; Song W; Gou J; Li YX; Jia L
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 284():121777. PubMed ID: 36058171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A ratiometric fluorescent nanoprobe based on terbium functionalized carbon dots for highly sensitive detection of an anthrax biomarker.
    Chen H; Xie Y; Kirillov AM; Liu L; Yu M; Liu W; Tang Y
    Chem Commun (Camb); 2015 Mar; 51(24):5036-9. PubMed ID: 25706307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ratiometric luminescent detection of bacterial spores with terbium chelated semiconducting polymer dots.
    Li Q; Sun K; Chang K; Yu J; Chiu DT; Wu C; Qin W
    Anal Chem; 2013 Oct; 85(19):9087-91. PubMed ID: 23964730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A ratiometric fluorescent probe for determination of the anthrax biomarker 2,6-pyridinedicarboxylic acid based on a terbium(III)- functionalized UIO-67 metal-organic framework.
    Zhang X; Zhang W; Li G; Liu Q; Xu Y; Liu X
    Mikrochim Acta; 2020 Jan; 187(2):122. PubMed ID: 31932902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of endospores in ancient permafrost using time-resolved terbium luminescence.
    Lalla SJ; Kaneshige KR; Miller DR; Mackelprang R; Mogul R
    Anal Biochem; 2021 Jan; 612():113957. PubMed ID: 32961249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanopore back titration analysis of dipicolinic acid.
    Han Y; Zhou S; Wang L; Guan X
    Electrophoresis; 2015 Feb; 36(3):467-70. PubMed ID: 25074707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold nanoparticle-based colorimetric sensing of dipicolinic acid from complex samples.
    Baig MMF; Chen YC
    Anal Bioanal Chem; 2018 Feb; 410(6):1805-1815. PubMed ID: 29368149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient inhibition of germination of coat-deficient bacterial spores by multivalent metal cations, including terbium (Tb³+).
    Yi X; Bond C; Sarker MR; Setlow P
    Appl Environ Microbiol; 2011 Aug; 77(15):5536-9. PubMed ID: 21685163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence lifetime and intensity of terbium-doped dipicolinic acid in water, HCl, and sodium acetate buffer solutions.
    Makoui A; Killinger DK
    Appl Opt; 2009 Feb; 48(4):B111-8. PubMed ID: 19183568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Terbium Functionalized Micelle Nanoprobe for Ratiometric Fluorescence Detection of Anthrax Spore Biomarker.
    Luan K; Meng R; Shan C; Cao J; Jia J; Liu W; Tang Y
    Anal Chem; 2018 Mar; 90(5):3600-3607. PubMed ID: 29385798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanocluster-europium(III) ratiometric fluorescence assay for dipicolinic acid.
    Li X; Luo J; Jiang X; Yang M; Rasooly A
    Mikrochim Acta; 2021 Jan; 188(1):26. PubMed ID: 33404771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly sensitive HPLC method for determination of nanomolar concentrations of dipicolinic acid, a characteristic constituent of bacterial endospores.
    Fichtel J; Köster J; Scholz-Böttcher B; Sass H; Rullkötter J
    J Microbiol Methods; 2007 Aug; 70(2):319-27. PubMed ID: 17573136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.