These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27479073)

  • 21. Self-catalyzed VLS grown InAs nanowires with twinning superlattices.
    Grap T; Rieger T; Blömers Ch; Schäpers T; Grützmacher D; Lepsa MI
    Nanotechnology; 2013 Aug; 24(33):335601. PubMed ID: 23881182
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The fabrication of dense and uniform InAs nanowire arrays.
    Persson AI; Fröberg LE; Samuelson L; Linke H
    Nanotechnology; 2009 Jun; 20(22):225304. PubMed ID: 19433868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Au-seeded growth of vertical and in-plane III-V nanowires on graphite substrates.
    Wallentin J; Kriegner D; Stangl J; Borgström MT
    Nano Lett; 2014; 14(4):1707-13. PubMed ID: 24592968
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superconductivity and Parity Preservation in As-Grown In Islands on InAs Nanowires.
    Bjergfelt MS; Carrad DJ; Kanne T; Johnson E; Fiordaliso EM; Jespersen TS; Nygård J
    Nano Lett; 2021 Dec; 21(23):9875-9881. PubMed ID: 34807620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multimode Fabry-Perot conductance oscillations in suspended stacking-faults-free InAs nanowires.
    Kretinin AV; Popovitz-Biro R; Mahalu D; Shtrikman H
    Nano Lett; 2010 Sep; 10(9):3439-45. PubMed ID: 20695446
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Faceting, composition and crystal phase evolution in III-V antimonide nanowire heterostructures revealed by combining microscopy techniques.
    Xu T; Dick KA; Plissard S; Nguyen TH; Makoudi Y; Berthe M; Nys JP; Wallart X; Grandidier B; Caroff P
    Nanotechnology; 2012 Mar; 23(9):095702. PubMed ID: 22322440
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalyst-free growth of InAs nanowires on Si (111) by CBE.
    Gomes UP; Ercolani D; Sibirev NV; Gemmi M; Dubrovskii VG; Beltram F; Sorba L
    Nanotechnology; 2015 Oct; 26(41):415604. PubMed ID: 26404459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crystal structure and transport in merged InAs nanowires MBE grown on (001) InAs.
    Kang JH; Cohen Y; Ronen Y; Heiblum M; Buczko R; Kacman P; Popovitz-Biro R; Shtrikman H
    Nano Lett; 2013 Nov; 13(11):5190-6. PubMed ID: 24093328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. van der Waals epitaxy of highly (111)-oriented BaTiO
    Bennett-Jackson AL; Falmbigl M; Hantanasirisakul K; Gu Z; Imbrenda D; Plokhikh AV; Will-Cole A; Hatter C; Wu L; Anasori B; Gogotsi Y; Spanier JE
    Nanoscale; 2019 Jan; 11(2):622-630. PubMed ID: 30560967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms of molecular beam epitaxy growth in InAs/InP nanowire heterostructures.
    Haapamaki CM; Lapierre RR
    Nanotechnology; 2011 Aug; 22(33):335602. PubMed ID: 21788682
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlled synthesis of phase-pure InAs nanowires on Si(111) by diminishing the diameter to 10 nm.
    Pan D; Fu M; Yu X; Wang X; Zhu L; Nie S; Wang S; Chen Q; Xiong P; von Molnár S; Zhao J
    Nano Lett; 2014 Mar; 14(3):1214-20. PubMed ID: 24528159
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Semiconductor nanowires directly grown on graphene--towards wafer scale transferable nanowire arrays with improved electrical contact.
    Alper JP; Gutes A; Carraro C; Maboudian R
    Nanoscale; 2013 May; 5(10):4114-8. PubMed ID: 23563903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoimprint and selective-area MOVPE for growth of GaAs/InAs core/shell nanowires.
    Haas F; Sladek K; Winden A; von der Ahe M; Weirich TE; Rieger T; Lüth H; Grützmacher D; Schäpers T; Hardtdegen H
    Nanotechnology; 2013 Mar; 24(8):085603. PubMed ID: 23385879
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Defect-free zinc-blende structured InAs nanowires realized by in situ two V/III ratio growth in molecular beam epitaxy.
    Zhang Z; Lu ZY; Chen PP; Lu W; Zou J
    Nanoscale; 2015 Aug; 7(29):12592-7. PubMed ID: 26145435
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Orientation Dependence of Electromechanical Characteristics of Defect-free InAs Nanowires.
    Zheng K; Zhang Z; Hu Y; Chen P; Lu W; Drennan J; Han X; Zou J
    Nano Lett; 2016 Mar; 16(3):1787-93. PubMed ID: 26837494
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of GaAs nanowire growth seeded by Ag and Au colloidal nanoparticles on silicon.
    Berdnikov Y; Ilkiv I; Sibirev N; Ubyivovk E; Bouravleuv A
    Nanotechnology; 2020 Sep; 31(37):374005. PubMed ID: 32460266
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dimension Engineering of High-Quality InAs Nanostructures on a Wafer Scale.
    Pan D; Wang JY; Zhang W; Zhu L; Su X; Fan F; Fu Y; Huang S; Wei D; Zhang L; Sui M; Yartsev A; Xu H; Zhao J
    Nano Lett; 2019 Mar; 19(3):1632-1642. PubMed ID: 30779588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct Growth of Light-Emitting III-V Nanowires on Flexible Plastic Substrates.
    Khayrudinov V; Remennyi M; Raj V; Alekseev P; Matveev B; Lipsanen H; Haggren T
    ACS Nano; 2020 Jun; 14(6):7484-7491. PubMed ID: 32437132
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control and understanding of kink formation in InAs-InP heterostructure nanowires.
    Fahlvik Svensson S; Jeppesen S; Thelander C; Samuelson L; Linke H; Dick KA
    Nanotechnology; 2013 Aug; 24(34):345601. PubMed ID: 23900037
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Epitaxy of semiconductor-superconductor nanowires.
    Krogstrup P; Ziino NL; Chang W; Albrecht SM; Madsen MH; Johnson E; Nygård J; Marcus CM; Jespersen TS
    Nat Mater; 2015 Apr; 14(4):400-6. PubMed ID: 25581626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.