These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 27479122)
1. Exploiting Single-Cell Quantitative Data to Map Genetic Variants Having Probabilistic Effects. Chuffart F; Richard M; Jost D; Burny C; Duplus-Bottin H; Ohya Y; Yvert G PLoS Genet; 2016 Aug; 12(8):e1006213. PubMed ID: 27479122 [TBL] [Abstract][Full Text] [Related]
2. Construction of a high-density genetic map by specific locus amplified fragment sequencing (SLAF-seq) and its application to Quantitative Trait Loci (QTL) analysis for boll weight in upland cotton (Gossypium hirsutum.). Zhang Z; Shang H; Shi Y; Huang L; Li J; Ge Q; Gong J; Liu A; Chen T; Wang D; Wang Y; Palanga KK; Muhammad J; Li W; Lu Q; Deng X; Tan Y; Song W; Cai J; Li P; Rashid Ho; Gong W; Yuan Y BMC Plant Biol; 2016 Apr; 16():79. PubMed ID: 27067834 [TBL] [Abstract][Full Text] [Related]
3. A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. McClure MC; Morsci NS; Schnabel RD; Kim JW; Yao P; Rolf MM; McKay SD; Gregg SJ; Chapple RH; Northcutt SL; Taylor JF Anim Genet; 2010 Dec; 41(6):597-607. PubMed ID: 20477797 [TBL] [Abstract][Full Text] [Related]
4. Genetic complexity and quantitative trait loci mapping of yeast morphological traits. Nogami S; Ohya Y; Yvert G PLoS Genet; 2007 Feb; 3(2):e31. PubMed ID: 17319748 [TBL] [Abstract][Full Text] [Related]
5. Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae. Swinnen S; Thevelein JM; Nevoigt E FEMS Yeast Res; 2012 Mar; 12(2):215-27. PubMed ID: 22150948 [TBL] [Abstract][Full Text] [Related]
6. Multiple locus linkage analysis of genomewide expression in yeast. Storey JD; Akey JM; Kruglyak L PLoS Biol; 2005 Aug; 3(8):e267. PubMed ID: 16035920 [TBL] [Abstract][Full Text] [Related]
7. Increased Power To Dissect Adaptive Traits in Global Sorghum Diversity Using a Nested Association Mapping Population. Bouchet S; Olatoye MO; Marla SR; Perumal R; Tesso T; Yu J; Tuinstra M; Morris GP Genetics; 2017 Jun; 206(2):573-585. PubMed ID: 28592497 [TBL] [Abstract][Full Text] [Related]
8. Genome wide association mapping for grain shape traits in indica rice. Feng Y; Lu Q; Zhai R; Zhang M; Xu Q; Yang Y; Wang S; Yuan X; Yu H; Wang Y; Wei X Planta; 2016 Oct; 244(4):819-30. PubMed ID: 27198135 [TBL] [Abstract][Full Text] [Related]
9. Limits on the reproducibility of marker associations with southern leaf blight resistance in the maize nested association mapping population. Bian Y; Yang Q; Balint-Kurti PJ; Wisser RJ; Holland JB BMC Genomics; 2014 Dec; 15(1):1068. PubMed ID: 25475173 [TBL] [Abstract][Full Text] [Related]
10. Genetic variation and association mapping for 12 agronomic traits in indica rice. Lu Q; Zhang M; Niu X; Wang S; Xu Q; Feng Y; Wang C; Deng H; Yuan X; Yu H; Wang Y; Wei X BMC Genomics; 2015 Dec; 16():1067. PubMed ID: 26673149 [TBL] [Abstract][Full Text] [Related]
11. Extensive simulations assess the performance of genome-wide association mapping in various Peter J; Friedrich A; Liti G; Schacherer J Philos Trans R Soc Lond B Biol Sci; 2022 Jul; 377(1855):20200514. PubMed ID: 35634920 [TBL] [Abstract][Full Text] [Related]
13. Multivariate eQTL mapping uncovers functional variation on the X-chromosome associated with complex disease traits. Brumpton BM; Ferreira MA Hum Genet; 2016 Jul; 135(7):827-39. PubMed ID: 27155841 [TBL] [Abstract][Full Text] [Related]
14. A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum). Milner SG; Maccaferri M; Huang BE; Mantovani P; Massi A; Frascaroli E; Tuberosa R; Salvi S Plant Biotechnol J; 2016 Feb; 14(2):735-48. PubMed ID: 26132599 [TBL] [Abstract][Full Text] [Related]
15. Assessing the value of phenotypic information from non-genotyped animals for QTL mapping of complex traits in real and simulated populations. Melo TP; Takada L; Baldi F; Oliveira HN; Dias MM; Neves HH; Schenkel FS; Albuquerque LG; Carvalheiro R BMC Genet; 2016 Jun; 17(1):89. PubMed ID: 27328759 [TBL] [Abstract][Full Text] [Related]
16. Resolving the Complex Genetic Basis of Phenotypic Variation and Variability of Cellular Growth. Ziv N; Shuster BM; Siegal ML; Gresham D Genetics; 2017 Jul; 206(3):1645-1657. PubMed ID: 28495957 [TBL] [Abstract][Full Text] [Related]
17. A genome-scale integrated approach aids in genetic dissection of complex flowering time trait in chickpea. Upadhyaya HD; Bajaj D; Das S; Saxena MS; Badoni S; Kumar V; Tripathi S; Gowda CL; Sharma S; Tyagi AK; Parida SK Plant Mol Biol; 2015 Nov; 89(4-5):403-20. PubMed ID: 26394865 [TBL] [Abstract][Full Text] [Related]
18. High-density genetic map construction and QTLs identification for plant height in white jute (Corchorus capsularis L.) using specific locus amplified fragment (SLAF) sequencing. Tao A; Huang L; Wu G; Afshar RK; Qi J; Xu J; Fang P; Lin L; Zhang L; Lin P BMC Genomics; 2017 May; 18(1):355. PubMed ID: 28482802 [TBL] [Abstract][Full Text] [Related]
19. On the prospects of whole-genome association mapping in Saccharomyces cerevisiae. Connelly CF; Akey JM Genetics; 2012 Aug; 191(4):1345-53. PubMed ID: 22673807 [TBL] [Abstract][Full Text] [Related]
20. Identification of favorable SNP alleles and candidate genes for traits related to early maturity via GWAS in upland cotton. Su J; Pang C; Wei H; Li L; Liang B; Wang C; Song M; Wang H; Zhao S; Jia X; Mao G; Huang L; Geng D; Wang C; Fan S; Yu S BMC Genomics; 2016 Aug; 17(1):687. PubMed ID: 27576450 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]