These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 27479218)

  • 21. Joint-level mechanics of the walk-to-run transition in humans.
    Pires NJ; Lay BS; Rubenson J
    J Exp Biol; 2014 Oct; 217(Pt 19):3519-27. PubMed ID: 25104752
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impaired heel to toe progression during gait is related to reduced ankle range of motion in people with Multiple Sclerosis.
    Psarakis M; Greene D; Moresi M; Baker M; Stubbs P; Brodie M; Lord S; Hoang P
    Clin Biomech (Bristol, Avon); 2017 Nov; 49():96-100. PubMed ID: 28898816
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomechanical effects of augmented ankle power output during human walking.
    Fickey SN; Browne MG; Franz JR
    J Exp Biol; 2018 Nov; 221(Pt 22):. PubMed ID: 30266784
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of walking speed on gait kinematics and kinetics after endoprosthetic knee replacement following bone tumor resection.
    Okita Y; Tatematsu N; Nagai K; Nakayama T; Nakamata T; Okamoto T; Toguchida J; Ichihashi N; Matsuda S; Tsuboyama T
    Gait Posture; 2014 Sep; 40(4):622-7. PubMed ID: 25103777
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Immediate effects of unilateral restricted ankle motion on gait kinematics in healthy subjects.
    Romkes J; Schweizer K
    Gait Posture; 2015 Mar; 41(3):835-40. PubMed ID: 25800648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relative changes in ankle and hip control during bilateral joint movements in persons with multiple sclerosis.
    Chua MC; Hyngstrom AS; Ng AV; Schmit BD
    Clin Neurophysiol; 2014 Jun; 125(6):1192-201. PubMed ID: 24315810
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study.
    Arazpour M; Ahmadi F; Bani MA; Hutchins SW; Bahramizadeh M; Ghomshe FT; Kashani RV
    Prosthet Orthot Int; 2014 Feb; 38(1):39-45. PubMed ID: 23660383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pelvic and lower limb compensatory actions of subjects in an early stage of hip osteoarthritis.
    Watelain E; Dujardin F; Babier F; Dubois D; Allard P
    Arch Phys Med Rehabil; 2001 Dec; 82(12):1705-11. PubMed ID: 11733886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compensatory mechanisms in below-knee amputee gait in response to increasing steady-state walking speeds.
    Silverman AK; Fey NP; Portillo A; Walden JG; Bosker G; Neptune RR
    Gait Posture; 2008 Nov; 28(4):602-9. PubMed ID: 18514526
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gait strategies to reduce the dynamic joint load in the lower limbs during a loading response in young healthy adults.
    Tajima T; Tateuchi H; Koyama Y; Ikezoe T; Ichihashi N
    Hum Mov Sci; 2018 Apr; 58():260-267. PubMed ID: 29524851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of age and physical activity status on redistribution of joint work during walking.
    Buddhadev HH; Martin PE
    Gait Posture; 2016 Oct; 50():131-136. PubMed ID: 27607304
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Locomotor strategies in obese and non-obese children.
    Nantel J; Brochu M; Prince F
    Obesity (Silver Spring); 2006 Oct; 14(10):1789-94. PubMed ID: 17062809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compensatory gait mechanics in patients with unilateral knee arthritis.
    McGibbon CA; Krebs DE
    J Rheumatol; 2002 Nov; 29(11):2410-9. PubMed ID: 12415602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Does muscle coactivation influence joint excursions during gait in children with and without hemiplegic cerebral palsy? Relationship between muscle coactivation and joint kinematics.
    Gross R; Leboeuf F; Hardouin JB; Perrouin-Verbe B; Brochard S; Rémy-Néris O
    Clin Biomech (Bristol, Avon); 2015 Dec; 30(10):1088-93. PubMed ID: 26377949
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of work and power by the human lower-limb joints with increasing steady-state locomotion speed.
    Schache AG; Brown NA; Pandy MG
    J Exp Biol; 2015 Aug; 218(Pt 15):2472-81. PubMed ID: 26056240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Altered joint kinetic strategies of healthy older adults and individuals with Parkinson's disease to walk at faster speeds.
    Kuhman D; Hammond KG; Hurt CP
    J Biomech; 2018 Oct; 79():112-118. PubMed ID: 30097267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The relationship between hip, knee and ankle muscle mechanical characteristics and gait transition speed.
    Ranisavljev I; Ilic V; Markovic S; Soldatovic I; Stefanovic D; Jaric S
    Hum Mov Sci; 2014 Dec; 38():47-57. PubMed ID: 25244181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Gait mechanics are different between healthy controls and patients with multiple sclerosis.
    Huisinga JM; Schmid KK; Filipi ML; Stergiou N
    J Appl Biomech; 2013 Jun; 29(3):303-11. PubMed ID: 22923390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gait biomechanics of skipping are substantially different than those of running.
    McDonnell J; Willson JD; Zwetsloot KA; Houmard J; DeVita P
    J Biomech; 2017 Nov; 64():180-185. PubMed ID: 29074289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gait analysis in chronic heart failure: The calf as a locus of impaired walking capacity.
    Panizzolo FA; Maiorana AJ; Naylor LH; Dembo L; Lloyd DG; Green DJ; Rubenson J
    J Biomech; 2014 Nov; 47(15):3719-25. PubMed ID: 25307437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.