These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27479353)

  • 1. Highly tunable plasmonic nanoring arrays for nanoparticle manipulation and detection.
    Sergides M; Truong VG; Chormaic SN
    Nanotechnology; 2016 Sep; 27(36):365301. PubMed ID: 27479353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast and efficient nanoparticle trapping using plasmonic connected nanoring apertures.
    Bouloumis TD; Kotsifaki DG; Han X; Chormaic SN; Truong VG
    Nanotechnology; 2021 Jan; 32(2):025507. PubMed ID: 32992307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection.
    Kravets VG; Schedin F; Jalil R; Britnell L; Gorbachev RV; Ansell D; Thackray B; Novoselov KS; Geim AK; Kabashin AV; Grigorenko AN
    Nat Mater; 2013 Apr; 12(4):304-9. PubMed ID: 23314104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subradiant Dipolar Interactions in Plasmonic Nanoring Resonator Array for Integrated Label-Free Biosensing.
    Liang Y; Zhang H; Zhu W; Agrawal A; Lezec H; Li L; Peng W; Zou Y; Lu Y; Xu T
    ACS Sens; 2017 Dec; 2(12):1796-1804. PubMed ID: 29139285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances.
    Halpern AR; Corn RM
    ACS Nano; 2013 Feb; 7(2):1755-62. PubMed ID: 23330883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmofluidic-Based Near-Field Optical Trapping of Dielectric Nano-Objects Using Gold Nanoislands Sensor Chips.
    Qiu G; Du Y; Guo Y; Meng Y; Gai Z; Zhang M; Wang J; deMello A
    ACS Appl Mater Interfaces; 2022 Oct; 14(42):47409-47419. PubMed ID: 36240070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices.
    Forcherio GT; Blake P; DeJarnette D; Roper DK
    Opt Express; 2014 Jul; 22(15):17791-803. PubMed ID: 25089400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectrophoretic trapping of nanosized biomolecules on plasmonic nanohole arrays for biosensor applications: simple fabrication and visible-region detection.
    Fujiwara S; Hata M; Onohara I; Kawasaki D; Sueyoshi K; Hisamoto H; Suzuki M; Yasukawa T; Endo T
    RSC Adv; 2023 Jul; 13(31):21118-21126. PubMed ID: 37449027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing plasmonic nanoantennas via coordinated multiple coupling.
    Lin L; Zheng Y
    Sci Rep; 2015 Oct; 5():14788. PubMed ID: 26423015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement.
    Cheng ZQ; Nan F; Yang DJ; Zhong YT; Ma L; Hao ZH; Zhou L; Wang QQ
    Nanoscale; 2015 Jan; 7(4):1463-70. PubMed ID: 25503522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization-Dependent Plasmonic Nano-Tweezer as a Platform for On-Chip Trapping and Manipulation of Virus-Like Particles.
    Mokri K; Mozaffari MH; Farmani A
    IEEE Trans Nanobioscience; 2022 Apr; 21(2):226-231. PubMed ID: 34665735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable potential well for plasmonic trapping of metallic particles by bowtie nano-apertures.
    Lu Y; Du G; Chen F; Yang Q; Bian H; Yong J; Hou X
    Sci Rep; 2016 Sep; 6():32675. PubMed ID: 27666667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fano-Resonant, Asymmetric, Metamaterial-Assisted Tweezers for Single Nanoparticle Trapping.
    Kotsifaki DG; Truong VG; Chormaic SN
    Nano Lett; 2020 May; 20(5):3388-3395. PubMed ID: 32275440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct Measurement of Optical Force Induced by Near-Field Plasmonic Cavity Using Dynamic Mode AFM.
    Guan D; Hang ZH; Marcet Z; Liu H; Kravchenko II; Chan CT; Chan HB; Tong P
    Sci Rep; 2015 Nov; 5():16216. PubMed ID: 26586455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of interdome spacing on the resonance properties of plasmonic nanodome arrays for label-free optical sensing.
    Choi CJ; Semancik S
    Opt Express; 2013 Nov; 21(23):28304-13. PubMed ID: 24514341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lithographically Patterned Nanoscale Electrodeposition of Plasmonic, Bimetallic, Semiconductor, Magnetic, and Polymer Nanoring Arrays.
    Cho K; Loget G; Corn RM
    J Phys Chem C Nanomater Interfaces; 2014 Dec; 118(50):28993-29000. PubMed ID: 25553204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic nano-tweezer based on square nanoplate tetramers.
    Jin Q; Wang L; Yan S; Wei H; Huang Y
    Appl Opt; 2018 Jul; 57(19):5328-5332. PubMed ID: 30117824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Raman fingerprinting of single dielectric nanoparticles in plasmonic nanopores.
    Kerman S; Chen C; Li Y; Van Roy W; Lagae L; Van Dorpe P
    Nanoscale; 2015 Nov; 7(44):18612-8. PubMed ID: 26490057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-unity transparency of a continuous metal film via cooperative effects of double plasmonic arrays.
    Liu ZQ; Liu GQ; Zhou HQ; Liu XS; Huang K; Chen YH; Fu GL
    Nanotechnology; 2013 Apr; 24(15):155203. PubMed ID: 23519272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-petri-dish array assisted glancing angle sputtering for Ag-NP assembled bi-nanoring arrays as effective SERS substrates.
    Hu X; Meng G; Huang Q; Zhu C; Chen B; Huang Z; Li F; Wang Z
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):7991-5. PubMed ID: 24869912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.