These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 27479494)

  • 1. Toward the influence of temporal attention on the selection of targets in a visual search task: An ERP study.
    Rolke B; Festl F; Seibold VC
    Psychophysiology; 2016 Nov; 53(11):1690-1701. PubMed ID: 27479494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal attention boosts perceptual effects of spatial attention and feature-based attention.
    Seibold VC; Stepper MY; Rolke B
    Brain Cogn; 2020 Jul; 142():105570. PubMed ID: 32447188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Irrelevant singletons in visual search do not capture attention but can produce nonspatial filtering costs.
    Wykowska A; Schubö A
    J Cogn Neurosci; 2011 Mar; 23(3):645-60. PubMed ID: 19929330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selecting and ignoring salient objects within and across dimensions in visual search.
    Schubö A; Müller HJ
    Brain Res; 2009 Aug; 1283():84-101. PubMed ID: 19501066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid top-down control over template-guided attention shifts to multiple objects.
    Grubert A; Fahrenfort J; Olivers CNL; Eimer M
    Neuroimage; 2017 Feb; 146():843-858. PubMed ID: 27554532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological revelations of trial history effects in a color oddball search task.
    Shin E; Chong SC
    Psychophysiology; 2016 Dec; 53(12):1878-1888. PubMed ID: 27699796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal preparation accelerates spatial selection by facilitating bottom-up processing.
    Balke J; Rolke B; Seibold VC
    Brain Res; 2022 Feb; 1777():147765. PubMed ID: 34951971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of top-down spatial attention in contingent attentional capture.
    Huang W; Su Y; Zhen Y; Qu Z
    Psychophysiology; 2016 May; 53(5):650-62. PubMed ID: 26879628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Speed of Serial Attention Shifts in Visual Search: Evidence from the N2pc Component.
    Grubert A; Eimer M
    J Cogn Neurosci; 2016 Feb; 28(2):319-32. PubMed ID: 26488588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiological correlates of visual singleton detection.
    Tay D; Harms V; Hillyard SA; McDonald JJ
    Psychophysiology; 2019 Aug; 56(8):e13375. PubMed ID: 30932198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rewarded visual items capture attention only in heterogeneous contexts.
    Feldmann-Wüstefeld T; Brandhofer R; Schubö A
    Psychophysiology; 2016 Jul; 53(7):1063-73. PubMed ID: 26997364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulus- and Response-locked Posterior Contralateral Negativity Bisect Cognitive Operations in Visual Search.
    Drisdelle BL; Jolicœur P
    J Cogn Neurosci; 2019 Apr; 31(4):574-591. PubMed ID: 30566367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multidimensional selection by temporal attention and feature-based attention: Evidence from event-related potentials.
    Seibold VC; Dietrich S; Rolke B
    Brain Res; 2019 Nov; 1722():146340. PubMed ID: 31326403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophysiological indices of target and distractor processing in visual search.
    Hickey C; Di Lollo V; McDonald JJ
    J Cogn Neurosci; 2009 Apr; 21(4):760-75. PubMed ID: 18564048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improvement in visual search with practice: mapping learning-related changes in neurocognitive stages of processing.
    Clark K; Appelbaum LG; van den Berg B; Mitroff SR; Woldorff MG
    J Neurosci; 2015 Apr; 35(13):5351-9. PubMed ID: 25834059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection history alters attentional filter settings persistently and beyond top-down control.
    Kadel H; Feldmann-Wüstefeld T; Schubö A
    Psychophysiology; 2017 May; 54(5):736-754. PubMed ID: 28169422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does temporal preparation speed up visual processing? Evidence from the N2pc.
    Seibold VC; Rolke B
    Psychophysiology; 2014 Jun; 51(6):529-38. PubMed ID: 24611621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The N2pc component and its links to attention shifts and spatially selective visual processing.
    Kiss M; Van Velzen J; Eimer M
    Psychophysiology; 2008 Mar; 45(2):240-9. PubMed ID: 17971061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The absence of a visual stimulus can trigger task-set-independent attentional capture.
    Kiss M; Eimer M
    Psychophysiology; 2011 Oct; 48(10):1426-33. PubMed ID: 21504432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociation of the N2pc and sustained posterior contralateral negativity in a choice response task.
    Jolicoeur P; Brisson B; Robitaille N
    Brain Res; 2008 Jun; 1215():160-72. PubMed ID: 18482718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.