These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 27479571)

  • 1. Functional characterization of the Aspergillus nidulans glucosylceramide pathway reveals that LCB Δ8-desaturation and C9-methylation are relevant to filamentous growth, lipid raft localization and Psd1 defensin activity.
    Fernandes CM; de Castro PA; Singh A; Fonseca FL; Pereira MD; Vila TV; Atella GC; Rozental S; Savoldi M; Del Poeta M; Goldman GH; Kurtenbach E
    Mol Microbiol; 2016 Nov; 102(3):488-505. PubMed ID: 27479571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylation of glycosylated sphingolipid modulates membrane lipid topography and pathogenicity of Cryptococcus neoformans.
    Singh A; Wang H; Silva LC; Na C; Prieto M; Futerman AH; Luberto C; Del Poeta M
    Cell Microbiol; 2012 Apr; 14(4):500-16. PubMed ID: 22151739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disruption of the glucosylceramide biosynthetic pathway in Aspergillus nidulans and Aspergillus fumigatus by inhibitors of UDP-Glc:ceramide glucosyltransferase strongly affects spore germination, cell cycle, and hyphal growth.
    Levery SB; Momany M; Lindsey R; Toledo MS; Shayman JA; Fuller M; Brooks K; Doong RL; Straus AH; Takahashi HK
    FEBS Lett; 2002 Aug; 525(1-3):59-64. PubMed ID: 12163162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in glucosylceramide structure affect virulence and membrane biophysical properties of Cryptococcus neoformans.
    Raj S; Nazemidashtarjandi S; Kim J; Joffe L; Zhang X; Singh A; Mor V; Desmarini D; Djordjevic J; Raleigh DP; Rodrigues ML; London E; Del Poeta M; Farnoud AM
    Biochim Biophys Acta Biomembr; 2017 Nov; 1859(11):2224-2233. PubMed ID: 28865794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Psd1 binding affinity toward fungal membrane components as assessed by SPR: The role of glucosylceramide in fungal recognition and entry.
    de Medeiros LN; Domitrovic T; de Andrade PC; Faria J; Bergter EB; Weissmüller G; Kurtenbach E
    Biopolymers; 2014 Nov; 102(6):456-64. PubMed ID: 25283273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Candida albicans sphingolipid C9-methyltransferase is involved in hyphal elongation.
    Oura T; Kajiwara S
    Microbiology (Reading); 2010 Apr; 156(Pt 4):1234-1243. PubMed ID: 20019081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of fungal sphingolipid C9-methyltransferases by phylogenetic profiling.
    Ternes P; Sperling P; Albrecht S; Franke S; Cregg JM; Warnecke D; Heinz E
    J Biol Chem; 2006 Mar; 281(9):5582-92. PubMed ID: 16339149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sphingolipid C-9 methyltransferases are important for growth and virulence but not for sensitivity to antifungal plant defensins in Fusarium graminearum.
    Ramamoorthy V; Cahoon EB; Thokala M; Kaur J; Li J; Shah DM
    Eukaryot Cell; 2009 Feb; 8(2):217-29. PubMed ID: 19028992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antifungal activity of plant defensin AFP1 in Brassica juncea involves the recognition of the methyl residue in glucosylceramide of target pathogen Candida albicans.
    Oguro Y; Yamazaki H; Takagi M; Takaku H
    Curr Genet; 2014 May; 60(2):89-97. PubMed ID: 24253293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Psd2 pea defensin shows a preference for mimetic membrane rafts enriched with glucosylceramide and ergosterol.
    Amaral VSG; Fernandes CM; Felício MR; Valle AS; Quintana PG; Almeida CC; Barreto-Bergter E; Gonçalves S; Santos NC; Kurtenbach E
    Biochim Biophys Acta Biomembr; 2019 Apr; 1861(4):713-728. PubMed ID: 30639288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sphingolipid Δ8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis.
    Chen M; Markham JE; Cahoon EB
    Plant J; 2012 Mar; 69(5):769-81. PubMed ID: 22023480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The
    Dai GY; Yin J; Li KE; Chen DK; Liu Z; Bi FC; Rong C; Yao N
    J Biol Chem; 2020 Jan; 295(3):717-728. PubMed ID: 31819005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface localization of glucosylceramide during Cryptococcus neoformans infection allows targeting as a potential antifungal.
    Rhome R; Singh A; Kechichian T; Drago M; Morace G; Luberto C; Del Poeta M
    PLoS One; 2011 Jan; 6(1):e15572. PubMed ID: 21283686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transmembrane transporter expression regulated by the glucosylceramide pathway in Cryptococcus neoformans.
    Singh A; Rella A; Schwacke J; Vacchi-Suzzi C; Luberto C; Del Poeta M
    BMC Res Notes; 2015 Nov; 8():681. PubMed ID: 26572681
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Amaral VSGD; Santos SACS; de Andrade PC; Nowatzki J; Júnior NS; de Medeiros LN; Gitirana LB; Pascutti PG; Almeida VH; Monteiro RQ; Kurtenbach E
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32290394
    [No Abstract]   [Full Text] [Related]  

  • 16. Glucosylceramide synthase regulates adipo-osteogenic differentiation through synergistic activation of PPARγ with GlcCer.
    Jang HJ; Lim S; Kim JM; Yoon S; Lee CY; Hwang HJ; Shin JW; Shin KJ; Kim HY; Park KI; Nam D; Lee JY; Yea K; Hirabayashi Y; Lee YJ; Chae YC; Suh PG; Choi JH
    FASEB J; 2020 Jan; 34(1):1270-1287. PubMed ID: 31914593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defensins from insects and plants interact with fungal glucosylceramides.
    Thevissen K; Warnecke DC; François IE; Leipelt M; Heinz E; Ott C; Zähringer U; Thomma BP; Ferket KK; Cammue BP
    J Biol Chem; 2004 Feb; 279(6):3900-5. PubMed ID: 14604982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucosylceramide synthase is essential for alfalfa defensin-mediated growth inhibition but not for pathogenicity of Fusarium graminearum.
    Ramamoorthy V; Cahoon EB; Li J; Thokala M; Minto RE; Shah DM
    Mol Microbiol; 2007 Nov; 66(3):771-86. PubMed ID: 17908205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sphingolipid metabolism is strikingly different between pollen and leaf in Arabidopsis as revealed by compositional and gene expression profiling.
    Luttgeharm KD; Kimberlin AN; Cahoon RE; Cerny RL; Napier JA; Markham JE; Cahoon EB
    Phytochemistry; 2015 Jul; 115():121-9. PubMed ID: 25794895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two Delta9-stearic acid desaturases are required for Aspergillus nidulans growth and development.
    Wilson RA; Chang PK; Dobrzyn A; Ntambi JM; Zarnowski R; Keller NP
    Fungal Genet Biol; 2004 May; 41(5):501-9. PubMed ID: 15050539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.