BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

737 related articles for article (PubMed ID: 27479696)

  • 21. Role of fatty acid uptake and fatty acid beta-oxidation in mediating insulin resistance in heart and skeletal muscle.
    Zhang L; Keung W; Samokhvalov V; Wang W; Lopaschuk GD
    Biochim Biophys Acta; 2010 Jan; 1801(1):1-22. PubMed ID: 19782765
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Increased ketone body oxidation provides additional energy for the failing heart without improving cardiac efficiency.
    Ho KL; Zhang L; Wagg C; Al Batran R; Gopal K; Levasseur J; Leone T; Dyck JRB; Ussher JR; Muoio DM; Kelly DP; Lopaschuk GD
    Cardiovasc Res; 2019 Sep; 115(11):1606-1616. PubMed ID: 30778524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Myocardial fatty acid metabolism in health and disease.
    Lopaschuk GD; Ussher JR; Folmes CD; Jaswal JS; Stanley WC
    Physiol Rev; 2010 Jan; 90(1):207-58. PubMed ID: 20086077
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cardiomyocyte-specific deletion of GCN5L1 reduces lysine acetylation and attenuates diastolic dysfunction in aged mice by improving cardiac fatty acid oxidation.
    Stewart JE; Crawford JM; Mullen WE; Jacques A; Stoner MW; Scott I; Thapa D
    Biochem J; 2024 Mar; 481(6):423-436. PubMed ID: 38390938
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acetylation contributes to hypertrophy-caused maturational delay of cardiac energy metabolism.
    Fukushima A; Zhang L; Huqi A; Lam VH; Rawat S; Altamimi T; Wagg CS; Dhaliwal KK; Hornberger LK; Kantor PF; Rebeyka IM; Lopaschuk GD
    JCI Insight; 2018 May; 3(10):. PubMed ID: 29769443
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cardiac insulin-resistance and decreased mitochondrial energy production precede the development of systolic heart failure after pressure-overload hypertrophy.
    Zhang L; Jaswal JS; Ussher JR; Sankaralingam S; Wagg C; Zaugg M; Lopaschuk GD
    Circ Heart Fail; 2013 Sep; 6(5):1039-48. PubMed ID: 23861485
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy.
    Fillmore N; Mori J; Lopaschuk GD
    Br J Pharmacol; 2014 Apr; 171(8):2080-90. PubMed ID: 24147975
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Disruption of Acetyl-Lysine Turnover in Muscle Mitochondria Promotes Insulin Resistance and Redox Stress without Overt Respiratory Dysfunction.
    Williams AS; Koves TR; Davidson MT; Crown SB; Fisher-Wellman KH; Torres MJ; Draper JA; Narowski TM; Slentz DH; Lantier L; Wasserman DH; Grimsrud PA; Muoio DM
    Cell Metab; 2020 Jan; 31(1):131-147.e11. PubMed ID: 31813822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic abnormalities in the diabetic heart.
    Lopaschuk GD
    Heart Fail Rev; 2002 Apr; 7(2):149-59. PubMed ID: 11988639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrion as a Target for Heart Failure Therapy- Role of Protein Lysine Acetylation.
    Lee CF; Tian R
    Circ J; 2015; 79(9):1863-70. PubMed ID: 26248514
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fatty Acid Oxidation and Its Relation with Insulin Resistance and Associated Disorders.
    Lopaschuk GD
    Ann Nutr Metab; 2016; 68 Suppl 3():15-20. PubMed ID: 27931032
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation.
    Dyck JR; Cheng JF; Stanley WC; Barr R; Chandler MP; Brown S; Wallace D; Arrhenius T; Harmon C; Yang G; Nadzan AM; Lopaschuk GD
    Circ Res; 2004 May; 94(9):e78-84. PubMed ID: 15105298
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MicroRNAs in heart failure: Non-coding regulators of metabolic function.
    Zhang X; Schulze PC
    Biochim Biophys Acta; 2016 Dec; 1862(12):2276-2287. PubMed ID: 27544699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cardiac-specific deficiency of the mitochondrial calcium uniporter augments fatty acid oxidation and functional reserve.
    Altamimi TR; Karwi QG; Uddin GM; Fukushima A; Kwong JQ; Molkentin JD; Lopaschuk GD
    J Mol Cell Cardiol; 2019 Feb; 127():223-231. PubMed ID: 30615880
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic toxicity of the heart: insights from molecular imaging.
    Iozzo P
    Nutr Metab Cardiovasc Dis; 2010 Mar; 20(3):147-56. PubMed ID: 20031381
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of cardiac energetics by non-invasive
    Abdurrachim D; Prompers JJ
    Biochim Biophys Acta Mol Basis Dis; 2018 May; 1864(5 Pt B):1939-1948. PubMed ID: 29175056
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targets for modulation of fatty acid oxidation in the heart.
    Lopaschuk GD
    Curr Opin Investig Drugs; 2004 Mar; 5(3):290-4. PubMed ID: 15083595
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Remodeling of substrate consumption in the murine sTAC model of heart failure.
    Turer A; Altamirano F; Schiattarella GG; May H; Gillette TG; Malloy CR; Merritt ME
    J Mol Cell Cardiol; 2019 Sep; 134():144-153. PubMed ID: 31340162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic, structural and biochemical changes in diabetes and the development of heart failure.
    Ho KL; Karwi QG; Connolly D; Pherwani S; Ketema EB; Ussher JR; Lopaschuk GD
    Diabetologia; 2022 Mar; 65(3):411-423. PubMed ID: 34994805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stimulating cardiac glucose oxidation lessens the severity of heart failure in aged female mice.
    Sun Q; Wagg CS; Güven B; Wei K; de Oliveira AA; Silver H; Zhang L; Vergara A; Chen B; Wong N; Wang F; Dyck JRB; Oudit GY; Lopaschuk GD
    Basic Res Cardiol; 2024 Feb; 119(1):133-150. PubMed ID: 38148348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 37.