These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 27479799)
1. Metabolic engineering of Propionibacterium freudenreichii subsp. shermanii for xylose fermentation. Wei P; Lin M; Wang Z; Fu H; Yang H; Jiang W; Yang ST Bioresour Technol; 2016 Nov; 219():91-97. PubMed ID: 27479799 [TBL] [Abstract][Full Text] [Related]
2. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution. Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327 [TBL] [Abstract][Full Text] [Related]
4. Engineering of a xylose metabolic pathway in Rhodococcus strains. Xiong X; Wang X; Chen S Appl Environ Microbiol; 2012 Aug; 78(16):5483-91. PubMed ID: 22636009 [TBL] [Abstract][Full Text] [Related]
6. Growth engineering of Propionibacterium freudenreichii shermanii for organic acids and other value-added products formation. Pillai VV; Prakash G; Lali AM Prep Biochem Biotechnol; 2018 Jan; 48(1):6-12. PubMed ID: 28976230 [TBL] [Abstract][Full Text] [Related]
7. Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Kawaguchi H; Vertès AA; Okino S; Inui M; Yukawa H Appl Environ Microbiol; 2006 May; 72(5):3418-28. PubMed ID: 16672486 [TBL] [Abstract][Full Text] [Related]
8. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production through co-utilization of glucose and xylose. Yu L; Xu M; Tang IC; Yang ST Biotechnol Bioeng; 2015 Oct; 112(10):2134-41. PubMed ID: 25894463 [TBL] [Abstract][Full Text] [Related]
9. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose. Hou J; Qiu C; Shen Y; Li H; Bao X FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582494 [TBL] [Abstract][Full Text] [Related]
10. Engineering Propionibacterium freudenreichii subsp. shermanii for enhanced propionic acid fermentation: effects of overexpressing propionyl-CoA:Succinate CoA transferase. Wang Z; Ammar EM; Zhang A; Wang L; Lin M; Yang ST Metab Eng; 2015 Jan; 27():46-56. PubMed ID: 25447642 [TBL] [Abstract][Full Text] [Related]
11. Propionic acid fermentation of glycerol and glucose by Propionibacterium acidipropionici and Propionibacterium freudenreichii ssp. shermanii. Himmi EH; Bories A; Boussaid A; Hassani L Appl Microbiol Biotechnol; 2000 Apr; 53(4):435-40. PubMed ID: 10803900 [TBL] [Abstract][Full Text] [Related]
12. Genomic analysis of a xylose operon and characterization of novel xylose isomerase and xylulokinase from Bacillus coagulans NL01. Zheng Z; Lin X; Jiang T; Ye W; Ouyang J Biotechnol Lett; 2016 Aug; 38(8):1331-9. PubMed ID: 27206341 [TBL] [Abstract][Full Text] [Related]
13. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum. Zhang Y; Vadlani PV; Kumar A; Hardwidge PR; Govind R; Tanaka T; Kondo A Appl Microbiol Biotechnol; 2016 Jan; 100(1):279-88. PubMed ID: 26433970 [TBL] [Abstract][Full Text] [Related]
14. Engineering Pseudomonas putida S12 for efficient utilization of D-xylose and L-arabinose. Meijnen JP; de Winde JH; Ruijssenaars HJ Appl Environ Microbiol; 2008 Aug; 74(16):5031-7. PubMed ID: 18586973 [TBL] [Abstract][Full Text] [Related]
15. xylA and xylB overexpression as a successful strategy for improving xylose utilization and poly-3-hydroxybutyrate production in Burkholderia sacchari. Guamán LP; Oliveira-Filho ER; Barba-Ostria C; Gomez JGC; Taciro MK; da Silva LF J Ind Microbiol Biotechnol; 2018 Mar; 45(3):165-173. PubMed ID: 29349569 [TBL] [Abstract][Full Text] [Related]
16. Modular Optimization of a Hemicellulose-Utilizing Pathway in Corynebacterium glutamicum for Consolidated Bioprocessing of Hemicellulosic Biomass. Yim SS; Choi JW; Lee SH; Jeong KJ ACS Synth Biol; 2016 Apr; 5(4):334-43. PubMed ID: 26808593 [TBL] [Abstract][Full Text] [Related]
17. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro. Ha SJ; Kim SR; Choi JH; Park MS; Jin YS Appl Microbiol Biotechnol; 2011 Oct; 92(1):77-84. PubMed ID: 21655987 [TBL] [Abstract][Full Text] [Related]
18. Transcriptome changes in adaptive evolution of xylose-fermenting industrial Saccharomyces cerevisiae strains with δ-integration of different xylA genes. Li YC; Zeng WY; Gou M; Sun ZY; Xia ZY; Tang YQ Appl Microbiol Biotechnol; 2017 Oct; 101(20):7741-7753. PubMed ID: 28900684 [TBL] [Abstract][Full Text] [Related]
19. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway. Ko JK; Um Y; Woo HM; Kim KH; Lee SM Bioresour Technol; 2016 Jun; 209():290-6. PubMed ID: 26990396 [TBL] [Abstract][Full Text] [Related]
20. Improvement of solvent production from xylose mother liquor by engineering the xylose metabolic pathway in Clostridium acetobutylicum EA 2018. Li Z; Xiao H; Jiang W; Jiang Y; Yang S Appl Biochem Biotechnol; 2013 Oct; 171(3):555-68. PubMed ID: 23949683 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]