These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
516 related articles for article (PubMed ID: 27479800)
1. Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae. El-Dalatony MM; Kurade MB; Abou-Shanab RAI; Kim H; Salama ES; Jeon BH Bioresour Technol; 2016 Nov; 219():98-105. PubMed ID: 27479800 [TBL] [Abstract][Full Text] [Related]
2. Repeated-batch fermentation using flocculent hybrid, Saccharomyces cerevisiae CHFY0321 for efficient production of bioethanol. Choi GW; Kang HW; Moon SK Appl Microbiol Biotechnol; 2009 Aug; 84(2):261-9. PubMed ID: 19319524 [TBL] [Abstract][Full Text] [Related]
3. Bioethanol production from the nutrient stress-induced microalga Chlorella vulgaris by enzymatic hydrolysis and immobilized yeast fermentation. Kim KH; Choi IS; Kim HM; Wi SG; Bae HJ Bioresour Technol; 2014 Feb; 153():47-54. PubMed ID: 24333701 [TBL] [Abstract][Full Text] [Related]
4. Ethanol production by repeated-batch simultaneous saccharification and fermentation (SSF) of alkali-treated rice straw using immobilized Saccharomyces cerevisiae cells. Watanabe I; Miyata N; Ando A; Shiroma R; Tokuyasu K; Nakamura T Bioresour Technol; 2012 Nov; 123():695-8. PubMed ID: 22939189 [TBL] [Abstract][Full Text] [Related]
5. Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Wu FC; Wu JY; Liao YJ; Wang MY; Shih IL Bioresour Technol; 2014 Mar; 156():123-31. PubMed ID: 24491295 [TBL] [Abstract][Full Text] [Related]
6. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production. Li H; Kim NJ; Jiang M; Kang JW; Chang HN Bioresour Technol; 2009 Jul; 100(13):3245-51. PubMed ID: 19289273 [TBL] [Abstract][Full Text] [Related]
7. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. Choudhary J; Singh S; Nain L J Biosci Bioeng; 2017 Mar; 123(3):342-346. PubMed ID: 27856231 [TBL] [Abstract][Full Text] [Related]
8. Batch bioethanol production via the biological and chemical saccharification of some Egyptian marine macroalgae. Soliman RM; Younis SA; El-Gendy NS; Mostafa SSM; El-Temtamy SA; Hashim AI J Appl Microbiol; 2018 Aug; 125(2):422-440. PubMed ID: 29675837 [TBL] [Abstract][Full Text] [Related]
9. Joint production of biodiesel and bioethanol from filamentous oleaginous microalgae Tribonema sp. Wang H; Ji C; Bi S; Zhou P; Chen L; Liu T Bioresour Technol; 2014 Nov; 172():169-173. PubMed ID: 25260180 [TBL] [Abstract][Full Text] [Related]
10. Bioethanol Production from Cellulose-Rich Corncob Residue by the Thermotolerant Boonchuay P; Techapun C; Leksawasdi N; Seesuriyachan P; Hanmoungjai P; Watanabe M; Srisupa S; Chaiyaso T J Fungi (Basel); 2021 Jul; 7(7):. PubMed ID: 34356926 [TBL] [Abstract][Full Text] [Related]
11. Comparison of red microalgae (Porphyridium cruentum) culture conditions for bioethanol production. Kim HM; Oh CH; Bae HJ Bioresour Technol; 2017 Jun; 233():44-50. PubMed ID: 28258995 [TBL] [Abstract][Full Text] [Related]
12. A comparison of the production of ethanol between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using unpretreated cassava pulp and enzyme cocktail. Zhu M; Li P; Gong X; Wang J Biosci Biotechnol Biochem; 2012; 76(4):671-8. PubMed ID: 22484928 [TBL] [Abstract][Full Text] [Related]
13. Chemo-enzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta. Lee OK; Kim AL; Seong DH; Lee CG; Jung YT; Lee JW; Lee EY Bioresour Technol; 2013 Mar; 132():197-201. PubMed ID: 23411448 [TBL] [Abstract][Full Text] [Related]
14. Bioethanol Production from Kim SK; Nguyen CM; Ko EH; Kim IC; Kim JS; Kim JC J Microbiol Biotechnol; 2017 Jun; 27(6):1112-1119. PubMed ID: 28372036 [TBL] [Abstract][Full Text] [Related]
15. Comparative evaluation of chemical and enzymatic saccharification of mixotrophically grown de-oiled microalgal biomass for reducing sugar production. Pancha I; Chokshi K; Maurya R; Bhattacharya S; Bachani P; Mishra S Bioresour Technol; 2016 Mar; 204():9-16. PubMed ID: 26771924 [TBL] [Abstract][Full Text] [Related]
16. Systematic optimization of fed-batch simultaneous saccharification and fermentation at high-solid loading based on enzymatic hydrolysis and dynamic metabolic modeling of Saccharomyces cerevisiae. Unrean P; Khajeeram S; Laoteng K Appl Microbiol Biotechnol; 2016 Mar; 100(5):2459-70. PubMed ID: 26610806 [TBL] [Abstract][Full Text] [Related]
17. Optimization of simultaneous saccharification and fermentation conditions with amphipathic lignin derivatives for concentrated bioethanol production. Cheng N; Koda K; Tamai Y; Yamamoto Y; Takasuka TE; Uraki Y Bioresour Technol; 2017 May; 232():126-132. PubMed ID: 28214699 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous saccharification and continuous fermentation of sludge-containing mash for bioethanol production by Saccharomyces cerevisiae CHFY0321. Moon SK; Kim SW; Choi GW J Biotechnol; 2012 Feb; 157(4):584-9. PubMed ID: 21723335 [TBL] [Abstract][Full Text] [Related]
19. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Ho SH; Huang SW; Chen CY; Hasunuma T; Kondo A; Chang JS Bioresour Technol; 2013 May; 135():191-8. PubMed ID: 23116819 [TBL] [Abstract][Full Text] [Related]
20. Hydrodynamic cavitation as a novel pretreatment approach for bioethanol production from reed. Kim I; Lee I; Jeon SH; Hwang T; Han JI Bioresour Technol; 2015 Sep; 192():335-9. PubMed ID: 26056773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]