These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27480387)

  • 1. Dynamics of microvesicle generation in B-cell chronic lymphocytic leukemia: implication in disease progression.
    Boysen J; Nelson M; Magzoub G; Maiti GP; Sinha S; Goswami M; Vesely SK; Shanafelt TD; Kay NE; Ghosh AK
    Leukemia; 2017 Feb; 31(2):350-360. PubMed ID: 27480387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: implications for disease progression.
    Ghosh AK; Secreto CR; Knox TR; Ding W; Mukhopadhyay D; Kay NE
    Blood; 2010 Mar; 115(9):1755-64. PubMed ID: 20018914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Residual cancer lymphocytes in patients with chronic lymphocytic leukemia after therapy show increased expression of surface antigen CD52 detected using quantitative fluorescence cytometry.
    Pevna M; Doubek M; Coupek P; Stehlikova O; Klabusay M
    Clin Lymphoma Myeloma Leuk; 2014 Oct; 14(5):411-8. PubMed ID: 25066039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different levels of CD52 antigen expression evaluated by quantitative fluorescence cytometry are detected on B-lymphocytes, CD 34+ cells and tumor cells of patients with chronic B-cell lymphoproliferative diseases.
    Klabusay M; Sukova V; Coupek P; Brychtova Y; Mayer J
    Cytometry B Clin Cytom; 2007 Sep; 72(5):363-70. PubMed ID: 17428002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative evaluation of CD52 expression in B-cell chronic lymphocytic leukemia.
    D'Arena G; Vigliotti ML; Matera R; Musto C; Iodice G; Tartarone A; Di Renzo N
    Leuk Lymphoma; 2003 Jul; 44(7):1255-7. PubMed ID: 12916884
    [No Abstract]   [Full Text] [Related]  

  • 6. Alemtuzumab induces caspase-independent cell death in human chronic lymphocytic leukemia cells through a lipid raft-dependent mechanism.
    Mone AP; Cheney C; Banks AL; Tridandapani S; Mehter N; Guster S; Lin T; Eisenbeis CF; Young DC; Byrd JC
    Leukemia; 2006 Feb; 20(2):272-9. PubMed ID: 16341049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell surface phenotype profiles distinguish stable and progressive chronic lymphocytic leukemia.
    Huang PY; Best OG; Almazi JG; Belov L; Davis ZA; Majid A; Dyer MJ; Pascovici D; Mulligan SP; Christopherson RI
    Leuk Lymphoma; 2014 Sep; 55(9):2085-92. PubMed ID: 24289109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The emerging role of alemtuzumab in chronic lymphocytic leukemia.
    Nabhan C
    Clin Lymphoma Myeloma; 2005 Sep; 6(2):115-21. PubMed ID: 16231849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pilot trial of rituximab and alemtuzumab combination therapy in patients with relapsed and/or refractory chronic lymphocytic leukemia (CLL).
    Nabhan C; Patton D; Gordon LI; Riley MB; Kuzel T; Tallman MS; Rosen ST
    Leuk Lymphoma; 2004 Nov; 45(11):2269-73. PubMed ID: 15512816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PHAGOCYTOSIS AND EXPRESSION OF FCg-RECEPTORS AND CD180 ON MONOCYTES IN CHRONIC LYMPHOCYTIC LEUKEMIA.
    Tsertsvadze T; Mitskevich N; Bilanishvili A; Girdaladze D; Porakishvili N
    Georgian Med News; 2017 Sep; (270):88-93. PubMed ID: 28972490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotypic analysis of receptor-ligand pairs on B-cells in B-chronic lymphocytic leukemia.
    Gagro A; Dasić G; Sabioncello A; Rabatić S; Reckzeh B; Havemann K; Kardum I; Jacksić B; Vitale B
    Leuk Lymphoma; 1997 Apr; 25(3-4):301-11. PubMed ID: 9168440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synergistic induction of apoptosis in B-cell chronic lymphocytic leukemia cells after treatment with all-trans retinoic acid in combination with interleukin-21 and rituximab.
    Abbaszadeh-Goudarzi K; Shokri F; Hosseini M; Jadidi-Niaragh F; Ghalamfarsa G; Saboor-Yaraghi AA
    J Cancer Res Ther; 2016; 12(4):1278-1283. PubMed ID: 28169240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of preactivated autologous T lymphocytes on CD80, CD86 and CD95 expression by chronic lymphocytic leukemia B cells.
    Romano C; De Fanis U; Sellitto A; Dalla Mora L; Chiurazzi F; Giunta R; Rotoli B; Lucivero G
    Leuk Lymphoma; 2003 Nov; 44(11):1963-71. PubMed ID: 14738151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alemtuzumab in the treatment of chronic lymphocytic leukemia.
    Robak T
    BioDrugs; 2005; 19(1):9-22. PubMed ID: 15691213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antigen modulation followed by quantitative flow cytometry of B-chronic lymphocytic leukemia cells after treatment.
    Kusenda J; Babusíková O
    Neoplasma; 2004; 51(2):97-102. PubMed ID: 15190418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface membrane antigen expression changes induced in vitro by exogenous growth factors in chronic lymphocytic leukemia cells.
    Vilpo J; Hulkkonen J; Hurme M; Vilpo L
    Leukemia; 2002 Sep; 16(9):1691-8. PubMed ID: 12200683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of alemtuzumab on neoplastic B cells.
    Golay J; Manganini M; Rambaldi A; Introna M
    Haematologica; 2004 Dec; 89(12):1476-83. PubMed ID: 15590398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel Raji-Burkitt's lymphoma model for preclinical and mechanistic evaluation of CD52-targeted immunotherapeutic agents.
    Lapalombella R; Zhao X; Triantafillou G; Yu B; Jin Y; Lozanski G; Cheney C; Heerema N; Jarjoura D; Lehman A; Lee LJ; Marcucci G; Lee RJ; Caligiuri MA; Muthusamy N; Byrd JC
    Clin Cancer Res; 2008 Jan; 14(2):569-78. PubMed ID: 18223233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of the chemokine receptors CXCR4 and CCR7 and disease progression in B-cell chronic lymphocytic leukemia/ small lymphocytic lymphoma.
    Ghobrial IM; Bone ND; Stenson MJ; Novak A; Hedin KE; Kay NE; Ansell SM
    Mayo Clin Proc; 2004 Mar; 79(3):318-25. PubMed ID: 15008605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytogenetic and flow cytometry evaluation of Richter syndrome reveals MYC, CDKN2A, IGH alterations with loss of CD52, CD62L and increase of CD71 antigen expression as the most frequent recurrent abnormalities.
    Woroniecka R; Rymkiewicz G; Grygalewicz B; Błachnio K; Rygier J; Jarmuż-Szymczak M; Ratajczak B; Pieńkowska-Grela B
    Am J Clin Pathol; 2015 Jan; 143(1):25-35. PubMed ID: 25511139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.