These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 27480404)

  • 21. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control.
    Roh JY; Choi JY; Li MS; Jin BR; Je YH
    J Microbiol Biotechnol; 2007 Apr; 17(4):547-59. PubMed ID: 18051264
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cadherin is involved in the action of Bacillus thuringiensis toxins Cry1Ac and Cry2Aa in the beet armyworm, Spodoptera exigua.
    Qiu L; Hou L; Zhang B; Liu L; Li B; Deng P; Ma W; Wang X; Fabrick JA; Chen L; Lei C
    J Invertebr Pathol; 2015 May; 127():47-53. PubMed ID: 25754522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The pesticidal Cry6Aa toxin from Bacillus thuringiensis is structurally similar to HlyE-family alpha pore-forming toxins.
    Dementiev A; Board J; Sitaram A; Hey T; Kelker MS; Xu X; Hu Y; Vidal-Quist C; Chikwana V; Griffin S; McCaskill D; Wang NX; Hung SC; Chan MK; Lee MM; Hughes J; Wegener A; Aroian RV; Narva KE; Berry C
    BMC Biol; 2016 Aug; 14(1):71. PubMed ID: 27576487
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bacillus thuringiensis: from biodiversity to biotechnology.
    Prieto-Samsónov DL; Vázquez-Padrón RI; Ayra-Pardo C; González-Cabrera J; de la Riva GA
    J Ind Microbiol Biotechnol; 1997 Sep; 19(3):202-19. PubMed ID: 9418060
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The distinct properties of natural and GM cry insecticidal proteins.
    Latham JR; Love M; Hilbeck A
    Biotechnol Genet Eng Rev; 2017 Apr; 33(1):62-96. PubMed ID: 28901209
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crystal structure of Cry51Aa1: A potential novel insecticidal aerolysin-type β-pore-forming toxin from Bacillus thuringiensis.
    Xu C; Chinte U; Chen L; Yao Q; Meng Y; Zhou D; Bi LJ; Rose J; Adang MJ; Wang BC; Yu Z; Sun M
    Biochem Biophys Res Commun; 2015 Jul; 462(3):184-9. PubMed ID: 25957471
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of Resistance to Insecticidal Proteins from
    Jurat-Fuentes JL; Heckel DG; Ferré J
    Annu Rev Entomol; 2021 Jan; 66():121-140. PubMed ID: 33417820
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Loop replacements with gut-binding peptides in Cry1Ab domain II enhanced toxicity against the brown planthopper, Nilaparvata lugens (Stål).
    Shao E; Lin L; Chen C; Chen H; Zhuang H; Wu S; Sha L; Guan X; Huang Z
    Sci Rep; 2016 Feb; 6():20106. PubMed ID: 26830331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Advances in effects of insecticidal crystal proteins released from transgenic Bt crops on soil ecology].
    Zhou XY; Liu N; Zhao M; Li H; Zhou L; Tang ZW; Cao F; Li W
    Yi Chuan; 2011 May; 33(5):443-8. PubMed ID: 21586391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Univalent binding of the Cry1Ab toxin of Bacillus thuringiensis to a conserved structural motif in the cadherin receptor BT-R1.
    Griko NB; Rose-Young L; Zhang X; Carpenter L; Candas M; Ibrahim MA; Junker M; Bulla LA
    Biochemistry; 2007 Sep; 46(35):10001-7. PubMed ID: 17696320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of Cry2Aa suggests an unexpected receptor binding epitope.
    Morse RJ; Yamamoto T; Stroud RM
    Structure; 2001 May; 9(5):409-17. PubMed ID: 11377201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissimilar Crystal Proteins Cry5Ca1 and Cry5Da1 Synergistically Act against Meloidogyne incognita and Delay Cry5Ba-Based Nematode Resistance.
    Geng C; Liu Y; Li M; Tang Z; Muhammad S; Zheng J; Wan D; Peng D; Ruan L; Sun M
    Appl Environ Microbiol; 2017 Sep; 83(18):. PubMed ID: 28710264
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Helicoverpa armigera baseline susceptibility to Bacillus thuringiensis Cry toxins and resistance management for Bt cotton in India.
    Gujar GT; Kalia V; Kumari A; Singh BP; Mittal A; Nair R; Mohan M
    J Invertebr Pathol; 2007 Jul; 95(3):214-9. PubMed ID: 17475275
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Cytocidal Spectrum of
    Mendoza-Almanza G; Esparza-Ibarra EL; Ayala-Luján JL; Mercado-Reyes M; Godina-González S; Hernández-Barrales M; Olmos-Soto J
    Toxins (Basel); 2020 May; 12(5):. PubMed ID: 32384723
    [No Abstract]   [Full Text] [Related]  

  • 35. Molecular Interaction-Based Exploration of the Broad Spectrum Efficacy of a
    Rathinam M; Kesiraju K; Singh S; Thimmegowda V; Rai V; Pattanayak D; Sreevathsa R
    Toxins (Basel); 2019 Mar; 11(3):. PubMed ID: 30832332
    [No Abstract]   [Full Text] [Related]  

  • 36. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection.
    Pardo-López L; Soberón M; Bravo A
    FEMS Microbiol Rev; 2013 Jan; 37(1):3-22. PubMed ID: 22540421
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cyt toxins produced by Bacillus thuringiensis: a protein fold conserved in several pathogenic microorganisms.
    Soberón M; López-Díaz JA; Bravo A
    Peptides; 2013 Mar; 41():87-93. PubMed ID: 22691603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacillus thuringiensis toxins: an overview of their biocidal activity.
    Palma L; Muñoz D; Berry C; Murillo J; Caballero P
    Toxins (Basel); 2014 Dec; 6(12):3296-325. PubMed ID: 25514092
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development and characterisation of transgenic rice expressing two Bacillus thuringiensis genes.
    Yang Z; Chen H; Tang W; Hua H; Lin Y
    Pest Manag Sci; 2011 Apr; 67(4):414-22. PubMed ID: 21394874
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacillus thuringiensis and its use in transgenic insect control technologies.
    Van Rie J
    Int J Med Microbiol; 2000 Oct; 290(4-5):463-9. PubMed ID: 11111927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.