These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 27480405)
41. Subchronic feeding study of DAS-59122-7 maize grain in Sprague-Dawley rats. Malley LA; Everds NE; Reynolds J; Mann PC; Lamb I; Rood T; Schmidt J; Layton RJ; Prochaska LM; Hinds M; Locke M; Chui CF; Claussen F; Mattsson JL; Delaney B Food Chem Toxicol; 2007 Jul; 45(7):1277-92. PubMed ID: 17329002 [TBL] [Abstract][Full Text] [Related]
42. Carbon isotope ratios document that the elytra of western corn rootworm (Coleoptera: Chrysomelidae) reflects adult versus larval feeding and later instar larvae prefer Bt corn to alternate hosts. Hiltpold I; Adamczyk JJ; Higdon ML; Clark TL; Ellersieck MR; Hibbard BE Environ Entomol; 2014 Jun; 43(3):840-8. PubMed ID: 24874160 [TBL] [Abstract][Full Text] [Related]
43. Binary toxins from Bacillus thuringiensis active against the western corn rootworm, Diabrotica virgifera virgifera LeConte. Baum JA; Chu CR; Rupar M; Brown GR; Donovan WP; Huesing JE; Ilagan O; Malvar TM; Pleau M; Walters M; Vaughn T Appl Environ Microbiol; 2004 Aug; 70(8):4889-98. PubMed ID: 15294828 [TBL] [Abstract][Full Text] [Related]
46. Susceptibility of Nebraska Western Corn Rootworm (Coleoptera: Chrysomelidae) Populations to Bt Corn Events. Wangila DS; Gassmann AJ; Petzold-Maxwell JL; French BW; Meinke LJ J Econ Entomol; 2015 Apr; 108(2):742-51. PubMed ID: 26470186 [TBL] [Abstract][Full Text] [Related]
47. Improving insect control protein activity for GM crops: A case study demonstrating that increased target insect potency can be achieved without impacting mammalian safety. Farmer DR; Edrington TC; Kessenich CR; Wang C; Petrick JS Regul Toxicol Pharmacol; 2017 Oct; 89():155-164. PubMed ID: 28751263 [TBL] [Abstract][Full Text] [Related]
48. Discovery of a novel insecticidal protein from Chromobacterium piscinae, with activity against Western Corn Rootworm, Diabrotica virgifera virgifera. Sampson K; Zaitseva J; Stauffer M; Vande Berg B; Guo R; Tomso D; McNulty B; Desai N; Balasubramanian D J Invertebr Pathol; 2017 Jan; 142():34-43. PubMed ID: 27983944 [TBL] [Abstract][Full Text] [Related]
49. Expression of an engineered synthetic cry2Aa (D42/K63F/K64P) gene of Bacillus thuringiensis in marker free transgenic tobacco facilitated full-protection from cotton leaf worm (S. littoralis) at very low concentration. Gayen S; Mandal CC; Samanta MK; Dey A; Sen SK World J Microbiol Biotechnol; 2016 Apr; 32(4):62. PubMed ID: 26925624 [TBL] [Abstract][Full Text] [Related]
50. Bt maize and integrated pest management--a European perspective. Meissle M; Romeis J; Bigler F Pest Manag Sci; 2011 Sep; 67(9):1049-58. PubMed ID: 21710684 [TBL] [Abstract][Full Text] [Related]
51. Development and characterisation of transgenic rice expressing two Bacillus thuringiensis genes. Yang Z; Chen H; Tang W; Hua H; Lin Y Pest Manag Sci; 2011 Apr; 67(4):414-22. PubMed ID: 21394874 [TBL] [Abstract][Full Text] [Related]
52. Effect of Seed Blends and Soil-Insecticide on Western and Northern Corn Rootworm Emergence from mCry3A+eCry3.1Ab Bt Maize. Frank DL; Kurtz R; Tinsley NA; Gassmann AJ; Meinke LJ; Moellenbeck D; Gray ME; Bledsoe LW; Krupke CH; Estes RE; Weber P; Hibbard BE J Econ Entomol; 2015 Jun; 108(3):1260-70. PubMed ID: 26470254 [TBL] [Abstract][Full Text] [Related]
53. Bacillus thuringiensis toxins: an overview of their biocidal activity. Palma L; Muñoz D; Berry C; Murillo J; Caballero P Toxins (Basel); 2014 Dec; 6(12):3296-325. PubMed ID: 25514092 [TBL] [Abstract][Full Text] [Related]
54. An alternative strategy for sustainable pest resistance in genetically enhanced crops. Mehlo L; Gahakwa D; Nghia PT; Loc NT; Capell T; Gatehouse JA; Gatehouse AM; Christou P Proc Natl Acad Sci U S A; 2005 May; 102(22):7812-6. PubMed ID: 15908504 [TBL] [Abstract][Full Text] [Related]
55. The impact of secondary pests on Bacillus thuringiensis (Bt) crops. Catarino R; Ceddia G; Areal FJ; Park J Plant Biotechnol J; 2015 Jun; 13(5):601-12. PubMed ID: 25832330 [TBL] [Abstract][Full Text] [Related]
56. Food safety knowledge on the Bt mutant protein Cry8Ka5 employed in the development of coleopteran-resistant transgenic cotton plants. Farias DF; Peijnenburg AA; Grossi-de-Sá MF; Carvalho AF Bioengineered; 2015; 6(6):323-7. PubMed ID: 26513483 [TBL] [Abstract][Full Text] [Related]
57. Bacillus thuringiensis and its use in transgenic insect control technologies. Van Rie J Int J Med Microbiol; 2000 Oct; 290(4-5):463-9. PubMed ID: 11111927 [TBL] [Abstract][Full Text] [Related]
58. Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. Pardo-López L; Soberón M; Bravo A FEMS Microbiol Rev; 2013 Jan; 37(1):3-22. PubMed ID: 22540421 [TBL] [Abstract][Full Text] [Related]
59. Baseline sensitivity of maize borers in India to the Bacillus thuringiensis insecticidal proteins Cry1A.105 and Cry2Ab2. Jalali SK; Yadavalli L; Ojha R; Kumar P; Sulaikhabeevi SB; Sharma R; Nair R; Kadanur RC; Kamath SP; Komarlingam MS Pest Manag Sci; 2015 Aug; 71(8):1082-90. PubMed ID: 25143318 [TBL] [Abstract][Full Text] [Related]
60. Crystal structure of Cry51Aa1: A potential novel insecticidal aerolysin-type β-pore-forming toxin from Bacillus thuringiensis. Xu C; Chinte U; Chen L; Yao Q; Meng Y; Zhou D; Bi LJ; Rose J; Adang MJ; Wang BC; Yu Z; Sun M Biochem Biophys Res Commun; 2015 Jul; 462(3):184-9. PubMed ID: 25957471 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]