These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
409 related articles for article (PubMed ID: 27480450)
1. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. Banerjee A; Qi J; Gogoi R; Wong J; Mitragotri S J Control Release; 2016 Sep; 238():176-185. PubMed ID: 27480450 [TBL] [Abstract][Full Text] [Related]
2. Effects of surface modification and size on oral drug delivery of mesoporous silica formulation. Wang Y; Cui Y; Zhao Y; Zhao Q; He B; Zhang Q; Wang S J Colloid Interface Sci; 2018 Mar; 513():736-747. PubMed ID: 29220688 [TBL] [Abstract][Full Text] [Related]
3. Permeation of nanoparticles across the intestinal lipid membrane: dependence on shape and surface chemistry studied through molecular simulations. Gupta R; Badhe Y; Mitragotri S; Rai B Nanoscale; 2020 Mar; 12(11):6318-6333. PubMed ID: 32133467 [TBL] [Abstract][Full Text] [Related]
4. The Influence of Nanoparticle Properties on Oral Bioavailability of Drugs. Wang Y; Pi C; Feng X; Hou Y; Zhao L; Wei Y Int J Nanomedicine; 2020; 15():6295-6310. PubMed ID: 32943863 [TBL] [Abstract][Full Text] [Related]
5. Development of conjugate-by-conjugate structured nanoparticles for oral delivery of docetaxel. Ha-Lien Tran P; Wang T; Yang C; Tran TTD; Duan W Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110346. PubMed ID: 31761193 [TBL] [Abstract][Full Text] [Related]
6. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles. Yuan H; Chen CY; Chai GH; Du YZ; Hu FQ Mol Pharm; 2013 May; 10(5):1865-73. PubMed ID: 23495754 [TBL] [Abstract][Full Text] [Related]
7. Size-exclusive effect of nanostructured lipid carriers on oral drug delivery. Li H; Chen M; Su Z; Sun M; Ping Q Int J Pharm; 2016 Sep; 511(1):524-537. PubMed ID: 27452421 [TBL] [Abstract][Full Text] [Related]
8. Intestinal uptake and transport of albumin nanoparticles: potential for oral delivery. Hashem L; Swedrowska M; Vllasaliu D Nanomedicine (Lond); 2018 Jun; 13(11):1255-1265. PubMed ID: 29949465 [TBL] [Abstract][Full Text] [Related]
9. Orally administered intelligent self-ablating nanoparticles: a new approach to improve drug cellular uptake and intestinal absorption. Liang Y; Ding R; Wang H; Liu L; He J; Tao Y; Zhao Z; Zhang J; Wang A; Sun K; Li Y; Shi Y Drug Deliv; 2022 Dec; 29(1):305-315. PubMed ID: 35037529 [TBL] [Abstract][Full Text] [Related]
11. Polyester-Solid Lipid Mixed Nanoparticles with Improved Stability in Gastro-Intestinal Tract Facilitated Oral Delivery of Larotaxel. Gou J; Feng S; Liang Y; Fang G; Zhang H; Yin T; Zhang Y; He H; Wang Y; Tang X Mol Pharm; 2017 Nov; 14(11):3750-3761. PubMed ID: 28945434 [TBL] [Abstract][Full Text] [Related]
12. Mechanisms of Nanoparticle Transport across Intestinal Tissue: An Oral Delivery Perspective. Ejazi SA; Louisthelmy R; Maisel K ACS Nano; 2023 Jul; 17(14):13044-13061. PubMed ID: 37410891 [TBL] [Abstract][Full Text] [Related]
13. Enhanced oral absorption and anticancer efficacy of cabazitaxel by overcoming intestinal mucus and epithelium barriers using surface polyethylene oxide (PEO) decorated positively charged polymer-lipid hybrid nanoparticles. Ren T; Wang Q; Xu Y; Cong L; Gou J; Tao X; Zhang Y; He H; Yin T; Zhang H; Zhang Y; Tang X J Control Release; 2018 Jan; 269():423-438. PubMed ID: 29133120 [TBL] [Abstract][Full Text] [Related]
14. Investigation Of Vitamin B Long L; Lai M; Mao X; Luo J; Yuan X; Zhang LM; Ke Z; Yang L; Deng DY Int J Nanomedicine; 2019; 14():7743-7758. PubMed ID: 31571874 [TBL] [Abstract][Full Text] [Related]
15. Denatured globular protein and bile salt-coated nanoparticles for poorly water-soluble drugs: Penetration across the intestinal epithelial barrier into the circulation system and enhanced oral bioavailability. He W; Yang K; Fan L; Lv Y; Jin Z; Zhu S; Qin C; Wang Y; Yin L Int J Pharm; 2015 Nov; 495(1):9-18. PubMed ID: 26325310 [TBL] [Abstract][Full Text] [Related]
16. pH-sensitive dual drug loaded janus nanoparticles by oral delivery for multimodal analgesia. Liu L; Yao W; Xie X; Gao J; Lu X J Nanobiotechnology; 2021 Aug; 19(1):235. PubMed ID: 34362394 [TBL] [Abstract][Full Text] [Related]
17. OCTN2-targeted nanoparticles for oral delivery of paclitaxel: differential impact of the polyethylene glycol linker size on drug delivery Kou L; Sun R; Xiao S; Cui X; Sun J; Ganapathy V; Yao Q; Chen R Drug Deliv; 2020 Dec; 27(1):170-179. PubMed ID: 31913724 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of solid lipid nanoparticles of lurasidone HCl for oral delivery: optimization, Patel MH; Mundada VP; Sawant KK Drug Dev Ind Pharm; 2019 Aug; 45(8):1242-1257. PubMed ID: 30880488 [No Abstract] [Full Text] [Related]
19. Interaction of cruciferin-based nanoparticles with Caco-2 cells and Caco-2/HT29-MTX co-cultures. Akbari A; Lavasanifar A; Wu J Acta Biomater; 2017 Dec; 64():249-258. PubMed ID: 29030304 [TBL] [Abstract][Full Text] [Related]
20. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Kulkarni SA; Feng SS Pharm Res; 2013 Oct; 30(10):2512-22. PubMed ID: 23314933 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]