These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 27480632)
1. On the study of microbial transcriptomes using second- and third-generation sequencing technologies. Choi SC J Microbiol; 2016 Aug; 54(8):527-36. PubMed ID: 27480632 [TBL] [Abstract][Full Text] [Related]
2. Unfolding the Bacterial Transcriptome Landscape Using Oxford Nanopore Technology Direct RNA Sequencing. Al Kadi M; Okuzaki D Methods Mol Biol; 2023; 2632():269-279. PubMed ID: 36781735 [TBL] [Abstract][Full Text] [Related]
3. Differential RNA-seq (dRNA-seq) for annotation of transcriptional start sites and small RNAs in Helicobacter pylori. Bischler T; Tan HS; Nieselt K; Sharma CM Methods; 2015 Sep; 86():89-101. PubMed ID: 26091613 [TBL] [Abstract][Full Text] [Related]
4. Native RNA-Sequencing Throws its Hat into the Transcriptomics Ring. Hussain S Trends Biochem Sci; 2018 Apr; 43(4):225-227. PubMed ID: 29503177 [TBL] [Abstract][Full Text] [Related]
5. Next generation sequencing of microbial transcriptomes: challenges and opportunities. van Vliet AH FEMS Microbiol Lett; 2010 Jan; 302(1):1-7. PubMed ID: 19735299 [TBL] [Abstract][Full Text] [Related]
6. Advances in bacterial transcriptome and transposon insertion-site profiling using second-generation sequencing. Febrer M; McLay K; Caccamo M; Twomey KB; Ryan RP Trends Biotechnol; 2011 Nov; 29(11):586-94. PubMed ID: 21764162 [TBL] [Abstract][Full Text] [Related]
7. RNA-Seq technology and its application in fish transcriptomics. Qian X; Ba Y; Zhuang Q; Zhong G OMICS; 2014 Feb; 18(2):98-110. PubMed ID: 24380445 [TBL] [Abstract][Full Text] [Related]
8. Next-generation sequencing technologies and their impact on microbial genomics. Forde BM; O'Toole PW Brief Funct Genomics; 2013 Sep; 12(5):440-53. PubMed ID: 23314033 [TBL] [Abstract][Full Text] [Related]
9. A first look at the Oxford Nanopore MinION sequencer. Mikheyev AS; Tin MM Mol Ecol Resour; 2014 Nov; 14(6):1097-102. PubMed ID: 25187008 [TBL] [Abstract][Full Text] [Related]
10. Genome assembly using Nanopore-guided long and error-free DNA reads. Madoui MA; Engelen S; Cruaud C; Belser C; Bertrand L; Alberti A; Lemainque A; Wincker P; Aury JM BMC Genomics; 2015 Apr; 16(1):327. PubMed ID: 25927464 [TBL] [Abstract][Full Text] [Related]
11. Choice of next-generation sequencing pipelines. Del Chierico F; Ancora M; Marcacci M; Cammà C; Putignani L; Conti S Methods Mol Biol; 2015; 1231():31-47. PubMed ID: 25343857 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive identification and quantification of microbial transcriptomes by genome-wide unbiased methods. Mäder U; Nicolas P; Richard H; Bessières P; Aymerich S Curr Opin Biotechnol; 2011 Feb; 22(1):32-41. PubMed ID: 21074401 [TBL] [Abstract][Full Text] [Related]
17. Accelerating Discovery and Functional Analysis of Small RNAs with New Technologies. Barquist L; Vogel J Annu Rev Genet; 2015; 49():367-94. PubMed ID: 26473381 [TBL] [Abstract][Full Text] [Related]
19. Next-generation sequencing applied to flower development: RNA-seq. He J; Jiao Y Methods Mol Biol; 2014; 1110():401-11. PubMed ID: 24395272 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the human mitochondrial transcriptome using directional deep sequencing and parallel analysis of RNA ends. Rackham O; Filipovska A Methods Mol Biol; 2014; 1125():263-75. PubMed ID: 24590795 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]