BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 27481029)

  • 1. Notification: Construction and Consensus Performance of (Q)SAR Models for Predicting Phospholipidosis Using a Dataset of 743 Compounds.
    Orogo AM; Choi SS; Minnier BL; Kruhlak NL
    Mol Inform; 2013 Jan; 32(1):121. PubMed ID: 27481029
    [No Abstract]   [Full Text] [Related]  

  • 2. Construction and Consensus Performance of (Q)SAR Models for Predicting Phospholipidosis Using a Dataset of 743 Compounds.
    Orogo AM; Choi SS; Minnier BL; Kruhlak NL
    Mol Inform; 2012 Oct; 31(10):725-39. PubMed ID: 27476455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico modeling to predict drug-induced phospholipidosis.
    Choi SS; Kim JS; Valerio LG; Sadrieh N
    Toxicol Appl Pharmacol; 2013 Jun; 269(2):195-204. PubMed ID: 23541745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.
    Kruhlak NL; Choi SS; Contrera JF; Weaver JL; Willard JM; Hastings KL; Sancilio LF
    Toxicol Mech Methods; 2008; 18(2-3):217-27. PubMed ID: 20020916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorial QSAR modeling of chemical toxicants tested against Tetrahymena pyriformis.
    Zhu H; Tropsha A; Fourches D; Varnek A; Papa E; Gramatica P; Oberg T; Dao P; Cherkasov A; Tetko IV
    J Chem Inf Model; 2008 Apr; 48(4):766-84. PubMed ID: 18311912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (Q)SAR: A Tool for the Toxicologist.
    Steinbach T; Gad-McDonald S; Kruhlak N; Powley M; Greene N
    Int J Toxicol; 2015; 34(4):352-4. PubMed ID: 25979517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing computational toxicology models with phytochemicals.
    Valerio LG; Arvidson KB; Busta E; Minnier BL; Kruhlak NL; Benz RD
    Mol Nutr Food Res; 2010 Feb; 54(2):186-94. PubMed ID: 20024931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SAR modeling of genotoxic phenomena: the consequence on predictive performance of deviation from a unity ratio of genotoxicants/non-genotoxicants.
    Rosenkranz HS
    Mutat Res; 2004 Apr; 559(1-2):67-71. PubMed ID: 15066575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening for phospholipidosis induced by central nervous drugs: comparing the predictivity of an in vitro assay to high throughput in silico assays.
    Mesens N; Steemans M; Hansen E; Verheyen GR; Van Goethem F; Van Gompel J
    Toxicol In Vitro; 2010 Aug; 24(5):1417-25. PubMed ID: 20430096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the OECD (Q)SAR Application Toolbox and Toxtree for predicting and profiling the carcinogenic potential of chemicals.
    Mombelli E; Devillers J
    SAR QSAR Environ Res; 2010 Oct; 21(7-8):731-52. PubMed ID: 21120759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consensus hologram QSAR modeling for the prediction of human intestinal absorption.
    Moda TL; Andricopulo AD
    Bioorg Med Chem Lett; 2012 Apr; 22(8):2889-93. PubMed ID: 22425566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting in vivo phospholipidosis-inducing potential of drugs by a combined high content screening and in silico modelling approach.
    Bauch C; Bevan S; Woodhouse H; Dilworth C; Walker P
    Toxicol In Vitro; 2015 Apr; 29(3):621-30. PubMed ID: 25668432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a published in silico model and construction of a novel Bayesian model for predicting phospholipidosis inducing potential.
    Pelletier DJ; Gehlhaar D; Tilloy-Ellul A; Johnson TO; Greene N
    J Chem Inf Model; 2007; 47(3):1196-205. PubMed ID: 17428028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the European Chemicals Bureau in promoting the regulatory use of (Q)SAR methods.
    Worth AP; Bassan A; De Bruijn J; Gallegos Saliner A; Netzeva T; Patlewicz G; Pavan M; Tsakovska I; Eisenreich S
    SAR QSAR Environ Res; 2007; 18(1-2):111-25. PubMed ID: 17365963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Silico Studies of the Relationship Between Chemical Structure and Drug Induced Phospholipidosis.
    Przybylak KR; Cronin MT
    Mol Inform; 2011 May; 30(5):415-29. PubMed ID: 27467088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano(Q)SAR: Challenges, pitfalls and perspectives.
    Tantra R; Oksel C; Puzyn T; Wang J; Robinson KN; Wang XZ; Ma CY; Wilkins T
    Nanotoxicology; 2015; 9(5):636-42. PubMed ID: 25211549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro assays and biomarkers for drug-induced phospholipidosis.
    Monteith DK; Morgan RE; Halstead B
    Expert Opin Drug Metab Toxicol; 2006 Oct; 2(5):687-96. PubMed ID: 17014389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of (consensus) kNN QSAR for predicting estrogenic activity in a large diverse set of organic compounds.
    Asikainen AH; Ruuskanen J; Tuppurainen KA
    SAR QSAR Environ Res; 2004 Feb; 15(1):19-32. PubMed ID: 15113066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current situation on the availability of nanostructure-biological activity data.
    Oksel C; Ma CY; Wang XZ
    SAR QSAR Environ Res; 2015; 26(2):79-94. PubMed ID: 25608859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.