These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27481071)

  • 1. On the onset of surface condensation: formation and transition mechanisms of condensation mode.
    Sheng Q; Sun J; Wang Q; Wang W; Wang HS
    Sci Rep; 2016 Aug; 6():30764. PubMed ID: 27481071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependences of Formation and Transition of the Surface Condensation Mode on Wettability and Temperature Difference.
    Pu JH; Sun J; Sheng Q; Wang W; Wang HS
    Langmuir; 2020 Jan; 36(1):456-464. PubMed ID: 31840509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-shedding and sweeping of condensate on composite nano-surface under external force field: enhancement mechanism for dropwise and filmwise condensation modes.
    Sun J; Wang HS
    Sci Rep; 2017 Aug; 7(1):8633. PubMed ID: 28819170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dropwise condensation on solid hydrophilic surfaces.
    Cha H; Vahabi H; Wu A; Chavan S; Kim MK; Sett S; Bosch SA; Wang W; Kota AK; Miljkovic N
    Sci Adv; 2020 Jan; 6(2):eaax0746. PubMed ID: 31950076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recurrent filmwise and dropwise condensation on a beetle mimetic surface.
    Hou Y; Yu M; Chen X; Wang Z; Yao S
    ACS Nano; 2015 Jan; 9(1):71-81. PubMed ID: 25482594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preferred Mode of Atmospheric Water Vapor Condensation on Nanoengineered Surfaces: Dropwise or Filmwise?
    Thomas TM; Sinha Mahapatra P; Ganguly R; Tiwari MK
    Langmuir; 2023 Apr; 39(15):5396-5407. PubMed ID: 37014297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic Wettability on the Lubricant-Impregnated Surface: From Nucleation to Growth and Coalescence.
    Guo L; Tang GH; Kumar S
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26555-26565. PubMed ID: 32419445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
    Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of Nanostructured Surfaces for Efficient Condensation by Controlling Condensation Modes.
    Che Q; Wang F; Zhao X
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677113
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of substrate wettability and flexibility on the initial stage of water vapor condensation.
    Che Q; Lu Y; Wang F; Zhao X
    Soft Matter; 2019 Dec; 15(48):10055-10064. PubMed ID: 31774101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switchable Wettability for Condensation Heat Transfer.
    Ludwicki JM; Robinson FL; Steen PH
    ACS Appl Mater Interfaces; 2020 May; 12(19):22115-22119. PubMed ID: 32347701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microscale Confinement and Wetting Contrast Enable Enhanced and Tunable Condensation.
    Yan X; Chen F; Zhao C; Wang X; Li L; Khodakarami S; Fazle Rabbi K; Li J; Hoque MJ; Chen F; Feng J; Miljkovic N
    ACS Nano; 2022 Jun; 16(6):9510-9522. PubMed ID: 35696260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dropwise condensation of low surface tension fluids on omniphobic surfaces.
    Rykaczewski K; Paxson AT; Staymates M; Walker ML; Sun X; Anand S; Srinivasan S; McKinley GH; Chinn J; Scott JH; Varanasi KK
    Sci Rep; 2014 Mar; 4():4158. PubMed ID: 24595171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the early and developed stages of surface condensation: competition mechanism between interfacial and condensate bulk thermal resistances.
    Sun J; Wang HS
    Sci Rep; 2016 Oct; 6():35003. PubMed ID: 27721397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning nanostructured surfaces with hybrid wettability areas to enhance condensation.
    Gao S; Liu W; Liu Z
    Nanoscale; 2019 Jan; 11(2):459-466. PubMed ID: 30325374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dropwise condensation: From fundamentals of wetting, nucleation, and droplet mobility to performance improvement by advanced functional surfaces.
    Zheng SF; Gross U; Wang XD
    Adv Colloid Interface Sci; 2021 Sep; 295():102503. PubMed ID: 34411880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dropwise Condensation on Multiscale Bioinspired Metallic Surfaces with Nanofeatures.
    Orejon D; Askounis A; Takata Y; Attinger D
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24735-24750. PubMed ID: 31180632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced condensation heat transfer using porous silica inverse opal coatings on copper tubes.
    Adera S; Naworski L; Davitt A; Mandsberg NK; Shneidman AV; Alvarenga J; Aizenberg J
    Sci Rep; 2021 May; 11(1):10675. PubMed ID: 34021211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer.
    Preston DJ; Wilke KL; Lu Z; Cruz SS; Zhao Y; Becerra LL; Wang EN
    Langmuir; 2018 Apr; 34(15):4658-4664. PubMed ID: 29578348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of surface wettability on water vapor condensation in nanoscale.
    Niu D; Tang GH
    Sci Rep; 2016 Jan; 6():19192. PubMed ID: 26754316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.