BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 27481139)

  • 1. Computational Study of Drugs by Integrating Omics Data with Kernel Methods.
    Wang YC; Deng N; Chen S; Wang Y
    Mol Inform; 2013 Dec; 32(11-12):930-41. PubMed ID: 27481139
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network predicting drug's anatomical therapeutic chemical code.
    Wang YC; Chen SL; Deng NY; Wang Y
    Bioinformatics; 2013 May; 29(10):1317-24. PubMed ID: 23564845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kernel-based data fusion improves the drug-protein interaction prediction.
    Wang YC; Zhang CH; Deng NY; Wang Y
    Comput Biol Chem; 2011 Dec; 35(6):353-62. PubMed ID: 22099632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational probing protein-protein interactions targeting small molecules.
    Wang YC; Chen SL; Deng NY; Wang Y
    Bioinformatics; 2016 Jan; 32(2):226-34. PubMed ID: 26415726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data.
    Wang Y; Chen S; Deng N; Wang Y
    PLoS One; 2013; 8(11):e78518. PubMed ID: 24244318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PDATC-NCPMKL: Predicting drug's Anatomical Therapeutic Chemical (ATC) codes based on network consistency projection and multiple kernel learning.
    Chen L; Xu J; Zhou Y
    Comput Biol Med; 2024 Feb; 169():107862. PubMed ID: 38150886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of drug's Anatomical Therapeutic Chemical (ATC) code by integrating drug-domain network.
    Chen FS; Jiang ZR
    J Biomed Inform; 2015 Dec; 58():80-88. PubMed ID: 26434987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug repositioning by prediction of drug's anatomical therapeutic chemical code via network-based inference approaches.
    Peng Y; Wang M; Xu Y; Wu Z; Wang J; Zhang C; Liu G; Li W; Li J; Tang Y
    Brief Bioinform; 2021 Mar; 22(2):2058-2072. PubMed ID: 32221552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network-based drug repositioning.
    Wu Z; Wang Y; Chen L
    Mol Biosyst; 2013 Jun; 9(6):1268-81. PubMed ID: 23493874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Similarity-based prediction for Anatomical Therapeutic Chemical classification of drugs by integrating multiple data sources.
    Liu Z; Guo F; Gu J; Wang Y; Li Y; Wang D; Lu L; Li D; He F
    Bioinformatics; 2015 Jun; 31(11):1788-95. PubMed ID: 25638810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DR2DI: a powerful computational tool for predicting novel drug-disease associations.
    Lu L; Yu H
    J Comput Aided Mol Des; 2018 May; 32(5):633-642. PubMed ID: 29687309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finding the targets of a drug by integration of gene expression data with a protein interaction network.
    Laenen G; Thorrez L; Börnigen D; Moreau Y
    Mol Biosyst; 2013 Jul; 9(7):1676-85. PubMed ID: 23443074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel.
    Meslamani J; Rognan D
    J Chem Inf Model; 2011 Jul; 51(7):1593-603. PubMed ID: 21644501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DrugNet: network-based drug-disease prioritization by integrating heterogeneous data.
    Martínez V; Navarro C; Cano C; Fajardo W; Blanco A
    Artif Intell Med; 2015 Jan; 63(1):41-9. PubMed ID: 25704113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration.
    Hameed PN; Verspoor K; Kusljic S; Halgamuge S
    BMC Bioinformatics; 2018 Apr; 19(1):129. PubMed ID: 29642848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large-scale Direct Targeting for Drug Repositioning and Discovery.
    Zheng C; Guo Z; Huang C; Wu Z; Li Y; Chen X; Fu Y; Ru J; Ali Shar P; Wang Y; Wang Y
    Sci Rep; 2015 Jul; 5():11970. PubMed ID: 26155766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsupervised multiple kernel learning for heterogeneous data integration.
    Mariette J; Villa-Vialaneix N
    Bioinformatics; 2018 Mar; 34(6):1009-1015. PubMed ID: 29077792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting anatomic therapeutic chemical classification codes using tiered learning.
    Olson T; Singh R
    BMC Bioinformatics; 2017 Jun; 18(Suppl 8):266. PubMed ID: 28617230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards drug repositioning: a unified computational framework for integrating multiple aspects of drug similarity and disease similarity.
    Zhang P; Wang F; Hu J
    AMIA Annu Symp Proc; 2014; 2014():1258-67. PubMed ID: 25954437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene expression trends and protein features effectively complement each other in gene function prediction.
    Wabnik K; Hvidsten TR; Kedzierska A; Van Leene J; De Jaeger G; Beemster GT; Komorowski J; Kuiper MT
    Bioinformatics; 2009 Feb; 25(3):322-30. PubMed ID: 19050035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.