BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27481330)

  • 1. Nutrient Channels Aid the Growth of Articular Surface-Sized Engineered Cartilage Constructs.
    Cigan AD; Durney KM; Nims RJ; Vunjak-Novakovic G; Hung CT; Ateshian GA
    Tissue Eng Part A; 2016 Sep; 22(17-18):1063-74. PubMed ID: 27481330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing nutrient channel spacing and revisiting TGF-beta in large engineered cartilage constructs.
    Cigan AD; Nims RJ; Vunjak-Novakovic G; Hung CT; Ateshian GA
    J Biomech; 2016 Jul; 49(10):2089-2094. PubMed ID: 27255605
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Nims RJ; Cigan AD; Durney KM; Jones BK; O'Neill JD; Law WA; Vunjak-Novakovic G; Hung CT; Ateshian GA
    Tissue Eng Part A; 2017 Aug; 23(15-16):847-858. PubMed ID: 28193145
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient channels and stirring enhanced the composition and stiffness of large cartilage constructs.
    Cigan AD; Nims RJ; Albro MB; Vunjak-Novakovic G; Hung CT; Ateshian GA
    J Biomech; 2014 Dec; 47(16):3847-54. PubMed ID: 25458579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of glycosaminoglycan content on the compressive modulus of cartilage engineered in type II collagen scaffolds.
    Pfeiffer E; Vickers SM; Frank E; Grodzinsky AJ; Spector M
    Osteoarthritis Cartilage; 2008 Oct; 16(10):1237-44. PubMed ID: 18406634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High seeding density of human chondrocytes in agarose produces tissue-engineered cartilage approaching native mechanical and biochemical properties.
    Cigan AD; Roach BL; Nims RJ; Tan AR; Albro MB; Stoker AM; Cook JL; Vunjak-Novakovic G; Hung CT; Ateshian GA
    J Biomech; 2016 Jun; 49(9):1909-1917. PubMed ID: 27198889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaffold degradation elevates the collagen content and dynamic compressive modulus in engineered articular cartilage.
    Ng KW; Kugler LE; Doty SB; Ateshian GA; Hung CT
    Osteoarthritis Cartilage; 2009 Feb; 17(2):220-7. PubMed ID: 18801665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic mechanical loading enhances functional properties of tissue-engineered cartilage using mature canine chondrocytes.
    Bian L; Fong JV; Lima EG; Stoker AM; Ateshian GA; Cook JL; Hung CT
    Tissue Eng Part A; 2010 May; 16(5):1781-90. PubMed ID: 20028219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Testing of Cartilage Constructs.
    Olvera D; Daly A; Kelly DJ
    Methods Mol Biol; 2015; 1340():279-87. PubMed ID: 26445846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matrix Production in Large Engineered Cartilage Constructs Is Enhanced by Nutrient Channels and Excess Media Supply.
    Nims RJ; Cigan AD; Albro MB; Vunjak-Novakovic G; Hung CT; Ateshian GA
    Tissue Eng Part C Methods; 2015 Jul; 21(7):747-57. PubMed ID: 25526931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of decreasing nutrient path length on the development of engineered cartilage.
    Bian L; Angione SL; Ng KW; Lima EG; Williams DY; Mao DQ; Ateshian GA; Hung CT
    Osteoarthritis Cartilage; 2009 May; 17(5):677-85. PubMed ID: 19022685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparison of primary and passaged chondrocytes for use in engineering the temporomandibular joint.
    Anderson DE; Athanasiou KA
    Arch Oral Biol; 2009 Feb; 54(2):138-45. PubMed ID: 19013549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface zone articular chondrocytes modulate the bulk and surface mechanical properties of the tissue-engineered cartilage.
    Peng G; McNary SM; Athanasiou KA; Reddi AH
    Tissue Eng Part A; 2014 Dec; 20(23-24):3332-41. PubMed ID: 24947008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topographic variations in biomechanical and biochemical properties in the ankle joint: an in vitro bovine study evaluating native and engineered cartilage.
    Paschos NK; Makris EA; Hu JC; Athanasiou KA
    Arthroscopy; 2014 Oct; 30(10):1317-26. PubMed ID: 25064757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs.
    Woodfield TB; Van Blitterswijk CA; De Wijn J; Sims TJ; Hollander AP; Riesle J
    Tissue Eng; 2005; 11(9-10):1297-311. PubMed ID: 16259586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new biodegradable polyester elastomer for cartilage tissue engineering.
    Kang Y; Yang J; Khan S; Anissian L; Ameer GA
    J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A paradigm for functional tissue engineering of articular cartilage via applied physiologic deformational loading.
    Hung CT; Mauck RL; Wang CC; Lima EG; Ateshian GA
    Ann Biomed Eng; 2004 Jan; 32(1):35-49. PubMed ID: 14964720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of temporal hydrostatic pressure on tissue-engineered bovine articular cartilage constructs.
    Elder BD; Athanasiou KA
    Tissue Eng Part A; 2009 May; 15(5):1151-8. PubMed ID: 18831685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Neonatal, Juvenile, and Adult Donors on Rejuvenated Neocartilage Functional Properties.
    Donahue RP; Nordberg RC; Bielajew BJ; Hu JC; Athanasiou KA
    Tissue Eng Part A; 2022 May; 28(9-10):383-393. PubMed ID: 34605665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overcoming Challenges in Engineering Large, Scaffold-Free Neocartilage with Functional Properties.
    Huang BJ; Brown WE; Keown T; Hu JC; Athanasiou KA
    Tissue Eng Part A; 2018 Nov; 24(21-22):1652-1662. PubMed ID: 29766751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.