BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 27481363)

  • 21. Zebrafish Avatar to Develop Precision Breast Cancer Therapies.
    Corsinovi D; Usai A; Sarlo M; Giannaccini M; Ori M
    Anticancer Agents Med Chem; 2022; 22(4):748-759. PubMed ID: 33797388
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development and characteristics of preclinical experimental models for the research of rare neuroendocrine bladder cancer.
    Hofner T; Macher-Goeppinger S; Klein C; Rigo-Watermeier T; Eisen C; Pahernik S; Hohenfellner M; Trumpp A; Sprick MR
    J Urol; 2013 Dec; 190(6):2263-70. PubMed ID: 23820058
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Invasive Behavior of Human Breast Cancer Cells in Embryonic Zebrafish.
    Ren J; Liu S; Cui C; Ten Dijke P
    J Vis Exp; 2017 Apr; (122):. PubMed ID: 28518096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Zebrafish: a new companion for translational research in oncology.
    Barriuso J; Nagaraju R; Hurlstone A
    Clin Cancer Res; 2015 Mar; 21(5):969-75. PubMed ID: 25573382
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling of human uveal melanoma in zebrafish xenograft embryos.
    van der Ent W; Burrello C; Teunisse AF; Ksander BR; van der Velden PA; Jager MJ; Jochemsen AG; Snaar-Jagalska BE
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6612-22. PubMed ID: 25249605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Establishment of Embryonic Zebrafish Xenograft Assays to Investigate TGF-β Family Signaling in Human Breast Cancer Progression.
    Li C; Ma J; Groenewoud A; Ren J; Liu S; Snaar-Jagalska BE; Ten Dijke P
    Methods Mol Biol; 2022; 2488():67-80. PubMed ID: 35347683
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Angiopoietin-2 promotes disease progression of neuroendocrine tumors.
    Detjen KM; Rieke S; Deters A; Schulz P; Rexin A; Vollmer S; Hauff P; Wiedenmann B; Pavel M; Scholz A
    Clin Cancer Res; 2010 Jan; 16(2):420-9. PubMed ID: 20068079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Zebrafish embryo, a tool to study tumor angiogenesis.
    Tobia C; De Sena G; Presta M
    Int J Dev Biol; 2011; 55(4-5):505-9. PubMed ID: 21858773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Establishing prostate cancer patient derived xenografts: lessons learned from older studies.
    Russell PJ; Russell P; Rudduck C; Tse BW; Williams ED; Raghavan D
    Prostate; 2015 May; 75(6):628-36. PubMed ID: 25560784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Patient-derived Heterogeneous Xenograft Model of Pancreatic Cancer Using Zebrafish Larvae as Hosts for Comparative Drug Assessment.
    Wang L; Chen H; Fei F; He X; Sun S; Lv K; Yu B; Long J; Wang X
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31107449
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling oncolytic virus dynamics in the tumor microenvironment using zebrafish.
    Mealiea D; Boudreau E; De Silva N; Okamoto L; Ho T; Fish JE; McCart JA
    Cancer Gene Ther; 2021 Aug; 28(7-8):769-784. PubMed ID: 32647136
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Establishment and Characterization of a Human Neuroendocrine Tumor Xenograft.
    Yang Z; Zhang L; Serra S; Law C; Wei A; Stockley TL; Ezzat S; Asa SL
    Endocr Pathol; 2016 Jun; 27(2):97-103. PubMed ID: 27067082
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluating human cancer cell metastasis in zebrafish.
    Teng Y; Xie X; Walker S; White DT; Mumm JS; Cowell JK
    BMC Cancer; 2013 Oct; 13():453. PubMed ID: 24089705
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fishing anti(lymph)angiogenic drugs with zebrafish.
    García-Caballero M; Quesada AR; Medina MA; Marí-Beffa M
    Drug Discov Today; 2018 Feb; 23(2):366-374. PubMed ID: 29081356
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatholobi Caulis extracts promote angiogenesis in HUVECs in vitro and in zebrafish embryos in vivo via up-regulation of VEGFRs.
    Zhou ZY; Huan LY; Zhao WR; Tang N; Jin Y; Tang JY
    J Ethnopharmacol; 2017 Mar; 200():74-83. PubMed ID: 27989880
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of angiogenesis in neuroendocrine tumors.
    Lyons J; Anthony CT; Woltering EA
    Endocrinol Metab Clin North Am; 2010 Dec; 39(4):839-52. PubMed ID: 21095549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Imaging Cancer Angiogenesis and Metastasis in a Zebrafish Embryo Model.
    Tulotta C; He S; van der Ent W; Chen L; Groenewoud A; Spaink HP; Snaar-Jagalska BE
    Adv Exp Med Biol; 2016; 916():239-63. PubMed ID: 27165357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Patient-derived xenograft models of neuroendocrine prostate cancer.
    Shi M; Wang Y; Lin D; Wang Y
    Cancer Lett; 2022 Jan; 525():160-169. PubMed ID: 34767925
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New perspectives in neuroendocrine neoplasms research from tumor xenografts in zebrafish embryos.
    Carra S; Gaudenzi G
    Minerva Endocrinol; 2020 Dec; 45(4):393-394. PubMed ID: 33103876
    [No Abstract]   [Full Text] [Related]  

  • 40. Xenotransplantation of human adipose-derived stem cells in zebrafish embryos.
    Li J; Zeng G; Qi Y; Tang X; Zhang J; Wu Z; Liang J; Shi L; Liu H; Zhang P
    PLoS One; 2015; 10(4):e0123264. PubMed ID: 25849455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.