BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 27481641)

  • 1. A nano-microstructured artificial-hair-cell-type sensor based on topologically graded 3D carbon nanotube bundles.
    Yilmazoglu O; Yadav S; Cicek D; Schneider JJ
    Nanotechnology; 2016 Sep; 27(36):365502. PubMed ID: 27481641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of 3D carbon nanotube interdigitated finger electrodes on polymer substrate for flexible capacitive sensor application.
    Hu CF; Wang JY; Liu YC; Tsai MH; Fang W
    Nanotechnology; 2013 Nov; 24(44):444006. PubMed ID: 24113135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vertically aligned multiwalled carbon nanotubes for pressure, tactile and vibration sensing.
    Yilmazoglu O; Popp A; Pavlidis D; Schneider JJ; Garth D; Schüttler F; Battenberg G
    Nanotechnology; 2012 Mar; 23(8):085501. PubMed ID: 22293280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor.
    Zhu Z; Song W; Burugapalli K; Moussy F; Li YL; Zhong XH
    Nanotechnology; 2010 Apr; 21(16):165501. PubMed ID: 20348597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The fabrication of vertically aligned and periodically distributed carbon nanotube bundles and periodically porous carbon nanotube films through a combination of laser interference ablation and metal-catalyzed chemical vapor deposition.
    Yuan D; Lin W; Guo R; Wong CP; Das S
    Nanotechnology; 2012 Jun; 23(21):215303. PubMed ID: 22551592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Sensitive Flexible Tactile Sensors in Wide Sensing Range Enabled by Hierarchical Topography of Biaxially Strained and Capillary-Densified Carbon Nanotube Bundles.
    Sim S; Jo E; Kang Y; Chung E; Kim J
    Small; 2021 Dec; 17(50):e2105334. PubMed ID: 34786842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile Fabrication of 3D Porous Sponges Coated with Synergistic Carbon Black/Multiwalled Carbon Nanotubes for Tactile Sensing Applications.
    Al-Handarish Y; Omisore OM; Duan W; Chen J; Zebang L; Akinyemi TO; Du W; Li H; Wang L
    Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 33003491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A highly sensitive flexible strain sensor based on the contact resistance change of carbon nanotube bundles.
    Song Y; Lee JI; Pyo S; Eun Y; Choi J; Kim J
    Nanotechnology; 2016 May; 27(20):205502. PubMed ID: 27071515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Uniform, Flexible Microelectrodes Based on the Clean Single-Walled Carbon Nanotube Thin Film with High Electrochemical Activity.
    Viet NX; Kishimoto S; Ohno Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6389-6395. PubMed ID: 30672689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using confined self-adjusting carbon nanotube arrays as high-sensitivity displacement sensing element.
    Lee JI; Eun Y; Choi J; Kwon DS; Kim J
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10181-7. PubMed ID: 24914449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects.
    Chiodarelli N; Masahito S; Kashiwagi Y; Li Y; Arstila K; Richard O; Cott DJ; Heyns M; De Gendt S; Groeseneken G; Vereecken PM
    Nanotechnology; 2011 Feb; 22(8):085302. PubMed ID: 21242623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local synthesis of aligned carbon nanotube bundle arrays by using integrated micro-heaters for interconnect applications.
    Xu T; Miao J; Li H; Wang Z
    Nanotechnology; 2009 Jul; 20(29):295303. PubMed ID: 19567951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and characterization of vertically aligned carbon nanotube forest for solid state fiber spinning.
    Ryu SW; Hwang JW; Hong SH
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5653-7. PubMed ID: 22966627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linearly Sensitive and Flexible Pressure Sensor Based on Porous Carbon Nanotube/Polydimethylsiloxane Composite Structure.
    Jung Y; Jung KK; Kim DH; Kwak DH; Ko JS
    Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32635624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible and Lightweight Pressure Sensor Based on Carbon Nanotube/Thermoplastic Polyurethane-Aligned Conductive Foam with Superior Compressibility and Stability.
    Huang W; Dai K; Zhai Y; Liu H; Zhan P; Gao J; Zheng G; Liu C; Shen C
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):42266-42277. PubMed ID: 29131573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon nanotube yarn strain sensors.
    Zhao H; Zhang Y; Bradford PD; Zhou Q; Jia Q; Yuan FG; Zhu Y
    Nanotechnology; 2010 Jul; 21(30):305502. PubMed ID: 20610871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-Time Imaging of Self-Organization and Mechanical Competition in Carbon Nanotube Forest Growth.
    Balakrishnan V; Bedewy M; Meshot ER; Pattinson SW; Polsen ES; Laye F; Zakharov DN; Stach EA; Hart AJ
    ACS Nano; 2016 Dec; 10(12):11496-11504. PubMed ID: 27959511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of morphology on the micro-compression response of carbon nanotube forests.
    Abadi PP; Hutchens SB; Greer JR; Cola BA; Graham S
    Nanoscale; 2012 Jun; 4(11):3373-80. PubMed ID: 22543679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A two-step shearing strategy to disperse long carbon nanotubes from vertically aligned multiwalled carbon nanotube arrays for transparent conductive films.
    Xu GH; Zhang Q; Huang JQ; Zhao MQ; Zhou WP; Wei F
    Langmuir; 2010 Feb; 26(4):2798-804. PubMed ID: 19817403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.