These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 27481676)

  • 1. CRISPR interference as a titratable, trans-acting regulatory tool for metabolic engineering in the cyanobacterium Synechococcus sp. strain PCC 7002.
    Gordon GC; Korosh TC; Cameron JC; Markley AL; Begemann MB; Pfleger BF
    Metab Eng; 2016 Nov; 38():170-179. PubMed ID: 27481676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942.
    Huang CH; Shen CR; Li H; Sung LY; Wu MY; Hu YC
    Microb Cell Fact; 2016 Nov; 15(1):196. PubMed ID: 27846887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production.
    Kim SK; Han GH; Seong W; Kim H; Kim SW; Lee DH; Lee SG
    Metab Eng; 2016 Nov; 38():228-240. PubMed ID: 27569599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production.
    Li H; Shen CR; Huang CH; Sung LY; Wu MY; Hu YC
    Metab Eng; 2016 Nov; 38():293-302. PubMed ID: 27693320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli.
    Kim SK; Seong W; Han GH; Lee DH; Lee SG
    Microb Cell Fact; 2017 Nov; 16(1):188. PubMed ID: 29100516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of CRISPR Interference for Metabolic Engineering of the Heterocyst-Forming Multicellular Cyanobacterium Anabaena sp. PCC 7120.
    Higo A; Isu A; Fukaya Y; Ehira S; Hisabori T
    Plant Cell Physiol; 2018 Jan; 59(1):119-127. PubMed ID: 29112727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable Repression of Key Photosynthetic Processes Using Cas12a CRISPR Interference in the Fast-Growing Cyanobacterium
    Knoot CJ; Biswas S; Pakrasi HB
    ACS Synth Biol; 2020 Jan; 9(1):132-143. PubMed ID: 31829621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of new synthetic biology tools for the control of gene expression in the cyanobacterium Synechococcus sp. strain PCC 7002.
    Zess EK; Begemann MB; Pfleger BF
    Biotechnol Bioeng; 2016 Feb; 113(2):424-32. PubMed ID: 26192329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPRi-dCas12a: A dCas12a-Mediated CRISPR Interference for Repression of Multiple Genes and Metabolic Engineering in Cyanobacteria.
    Choi SY; Woo HM
    ACS Synth Biol; 2020 Sep; 9(9):2351-2361. PubMed ID: 32379967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Corynebacterium glutamicum Metabolic Engineering with CRISPR Interference (CRISPRi).
    Cleto S; Jensen JV; Wendisch VF; Lu TK
    ACS Synth Biol; 2016 May; 5(5):375-85. PubMed ID: 26829286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions.
    Hirokawa Y; Maki Y; Hanai T
    Metab Eng; 2017 Jan; 39():192-199. PubMed ID: 27998670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR interference (CRISPRi) for sequence-specific control of gene expression.
    Larson MH; Gilbert LA; Wang X; Lim WA; Weissman JS; Qi LS
    Nat Protoc; 2013 Nov; 8(11):2180-96. PubMed ID: 24136345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR-Based Technologies for Metabolic Engineering in Cyanobacteria.
    Behler J; Vijay D; Hess WR; Akhtar MK
    Trends Biotechnol; 2018 Oct; 36(10):996-1010. PubMed ID: 29937051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain.
    Park J; Shin H; Lee SM; Um Y; Woo HM
    Microb Cell Fact; 2018 Jan; 17(1):4. PubMed ID: 29316926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR interference-mediated metabolic engineering of Corynebacterium glutamicum for homo-butyrate production.
    Yoon J; Woo HM
    Biotechnol Bioeng; 2018 Aug; 115(8):2067-2074. PubMed ID: 29704438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Redirecting Metabolic Flux via Combinatorial Multiplex CRISPRi-Mediated Repression for Isopentenol Production in Escherichia coli.
    Tian T; Kang JW; Kang A; Lee TS
    ACS Synth Biol; 2019 Feb; 8(2):391-402. PubMed ID: 30681833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of CRISPR interference on strain development in biotechnology.
    Schultenkämper K; Brito LF; Wendisch VF
    Biotechnol Appl Biochem; 2020 Jan; 67(1):7-21. PubMed ID: 32064678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced protein and biochemical production using CRISPRi-based growth switches.
    Li S; Jendresen CB; Grünberger A; Ronda C; Jensen SI; Noack S; Nielsen AT
    Metab Eng; 2016 Nov; 38():274-284. PubMed ID: 27647432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment of CRISPR interference in Methylorubrum extorquens and application of rapidly mining a new phytoene desaturase involved in carotenoid biosynthesis.
    Mo XH; Zhang H; Wang TM; Zhang C; Zhang C; Xing XH; Yang S
    Appl Microbiol Biotechnol; 2020 May; 104(10):4515-4532. PubMed ID: 32215707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Density Guide RNA Tiling and Machine Learning for Designing CRISPR Interference in
    Dallo T; Krishnakumar R; Kolker SD; Ruffing AM
    ACS Synth Biol; 2023 Apr; 12(4):1175-1186. PubMed ID: 36893454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.