BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27481704)

  • 1. ydjN encodes an S-sulfocysteine transporter required by Escherichia coli for growth on S-sulfocysteine as a sulfur source.
    Yamazaki S; Takei K; Nonaka G
    FEMS Microbiol Lett; 2016 Sep; 363(17):. PubMed ID: 27481704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological Roles and Adverse Effects of the Two Cystine Importers of Escherichia coli.
    Chonoles Imlay KR; Korshunov S; Imlay JA
    J Bacteriol; 2015 Dec; 197(23):3629-44. PubMed ID: 26350134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a CysB-regulated gene involved in glutathione transport in Escherichia coli.
    Parry J; Clark DP
    FEMS Microbiol Lett; 2002 Mar; 209(1):81-5. PubMed ID: 12007658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Escherichia coli K-12 Lacks a High-Affinity Assimilatory Cysteine Importer.
    Zhou Y; Imlay JA
    mBio; 2020 Jun; 11(3):. PubMed ID: 32518189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentative production of sulfur-containing amino acid with engineering putative l-cystathionine and l-cysteine uptake systems in Escherichia coli.
    Yamazaki S; Ziyatdinov MK; Nonaka G
    J Biosci Bioeng; 2020 Jul; 130(1):14-19. PubMed ID: 32217026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defect of RNA pyrophosphohydrolase RppH enhances fermentative production of L-cysteine in Escherichia coli.
    Morigasaki S; Umeyama A; Kawano Y; Aizawa Y; Ohtsu I
    J Gen Appl Microbiol; 2021 Feb; 66(6):307-314. PubMed ID: 32779574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic Cysteine Degradation and Potential Metabolic Coordination in Salmonella enterica and Escherichia coli.
    Loddeke M; Schneider B; Oguri T; Mehta I; Xuan Z; Reitzer L
    J Bacteriol; 2017 Aug; 199(16):. PubMed ID: 28607157
    [No Abstract]   [Full Text] [Related]  

  • 8. Sulfonate-sulfur metabolism and its regulation in Escherichia coli.
    van der Ploeg JR; Eichhorn E; Leisinger T
    Arch Microbiol; 2001 Jul; 176(1-2):1-8. PubMed ID: 11479697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Susceptibility of Escherichia coli to the toxic L-proline analogue L-selenaproline is dependent on two L-cystine transport systems.
    Deutch CE; Spahija I; Wagner CE
    J Appl Microbiol; 2014 Nov; 117(5):1487-99. PubMed ID: 25139244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancement of Sulfur Conversion Rate in the Production of l-Cysteine by Engineered
    Liu H; Hou Y; Wang Y; Li Z
    J Agric Food Chem; 2020 Jan; 68(1):250-257. PubMed ID: 31823602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli.
    Nakatani T; Ohtsu I; Nonaka G; Wiriyathanawudhiwong N; Morigasaki S; Takagi H
    Microb Cell Fact; 2012 May; 11():62. PubMed ID: 22607201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of compartment-specific cysteine synthesis for sulfur homeostasis during H2S exposure in Arabidopsis.
    Birke H; De Kok LJ; Wirtz M; Hell R
    Plant Cell Physiol; 2015 Feb; 56(2):358-67. PubMed ID: 25416292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of carbon utilization by sulfur availability in Escherichia coli and Salmonella typhimurium.
    Quan JA; Schneider BL; Paulsen IT; Yamada M; Kredich NM; Saier MH
    Microbiology (Reading); 2002 Jan; 148(Pt 1):123-131. PubMed ID: 11782505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved fermentative L-cysteine overproduction by enhancing a newly identified thiosulfate assimilation pathway in Escherichia coli.
    Kawano Y; Onishi F; Shiroyama M; Miura M; Tanaka N; Oshiro S; Nonaka G; Nakanishi T; Ohtsu I
    Appl Microbiol Biotechnol; 2017 Sep; 101(18):6879-6889. PubMed ID: 28756590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yct1p, a novel, high-affinity, cysteine-specific transporter from the yeast Saccharomyces cerevisiae.
    Kaur J; Bachhawat AK
    Genetics; 2007 Jun; 176(2):877-90. PubMed ID: 17435223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of drug transporter genes on cysteine export and overproduction in Escherichia coli.
    Yamada S; Awano N; Inubushi K; Maeda E; Nakamori S; Nishino K; Yamaguchi A; Takagi H
    Appl Environ Microbiol; 2006 Jul; 72(7):4735-42. PubMed ID: 16820466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The cysteine desulfhydrase CdsH is conditionally required for sulfur mobilization to the thiamine thiazole in Salmonella enterica.
    Palmer LD; Leung MH; Downs DM
    J Bacteriol; 2014 Nov; 196(22):3964-70. PubMed ID: 25182497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of L-cysteine production by disruption of yciW in Escherichia coli.
    Kawano Y; Ohtsu I; Takumi K; Tamakoshi A; Nonaka G; Funahashi E; Ihara M; Takagi H
    J Biosci Bioeng; 2015 Feb; 119(2):176-9. PubMed ID: 25103863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfur metabolism in Escherichia coli and related bacteria: facts and fiction.
    Sekowska A; Kung HF; Danchin A
    J Mol Microbiol Biotechnol; 2000 Apr; 2(2):145-77. PubMed ID: 10939241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacillus subtilis cysteine synthetase is a global regulator of the expression of genes involved in sulfur assimilation.
    Albanesi D; Mansilla MC; Schujman GE; de Mendoza D
    J Bacteriol; 2005 Nov; 187(22):7631-8. PubMed ID: 16267287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.