BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27481704)

  • 21. Gene expression regulation of the PF00480 or PF14340 domain proteins suggests their involvement in sulfur metabolism.
    Lyubetsky VA; Korolev SA; Seliverstov AV; Zverkov OA; Rubanov LI
    Comput Biol Chem; 2014 Apr; 49():7-13. PubMed ID: 24513779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Construction of an l-cysteine hyper-producing strain of
    Zhang B; Chen K; Yang H; Wu Z; Liu Z; Zheng Y
    Sheng Wu Gong Cheng Xue Bao; 2022 Dec; 38(12):4567-4586. PubMed ID: 36593194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. S-Sulfocysteine simplifies fed-batch processes and increases the CHO specific productivity via anti-oxidant activity.
    Hecklau C; Pering S; Seibel R; Schnellbaecher A; Wehsling M; Eichhorn T; Hagen Jv; Zimmer A
    J Biotechnol; 2016 Jan; 218():53-63. PubMed ID: 26654938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Uptake of L-cystine via an ABC transporter contributes defense of oxidative stress in the L-cystine export-dependent manner in Escherichia coli.
    Ohtsu I; Kawano Y; Suzuki M; Morigasaki S; Saiki K; Yamazaki S; Nonaka G; Takagi H
    PLoS One; 2015; 10(3):e0120619. PubMed ID: 25837721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The yeaS (leuE) gene of Escherichia coli encodes an exporter of leucine, and the Lrp protein regulates its expression.
    Kutukova EA; Livshits VA; Altman IP; Ptitsyn LR; Zyiatdinov MH; Tokmakova IL; Zakataeva NP
    FEBS Lett; 2005 Aug; 579(21):4629-34. PubMed ID: 16098526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cystine import is a valuable but risky process whose hazards Escherichia coli minimizes by inducing a cysteine exporter.
    Korshunov S; Imlay KRC; Imlay JA
    Mol Microbiol; 2020 Jan; 113(1):22-39. PubMed ID: 31612555
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The sulfur/sulfonates transport systems in Xanthomonas citri pv. citri.
    Pereira CT; Moutran A; Fessel M; Balan A
    BMC Genomics; 2015 Jul; 16(1):524. PubMed ID: 26169280
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial Cysteine-Inducible Cysteine Resistance Systems.
    Takumi K; Nonaka G
    J Bacteriol; 2016 May; 198(9):1384-92. PubMed ID: 26883827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Current understanding of sulfur assimilation metabolism to biosynthesize L-cysteine and recent progress of its fermentative overproduction in microorganisms.
    Kawano Y; Suzuki K; Ohtsu I
    Appl Microbiol Biotechnol; 2018 Oct; 102(19):8203-8211. PubMed ID: 30046857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Drought stress in maize causes differential acclimation responses of glutathione and sulfur metabolism in leaves and roots.
    Ahmad N; Malagoli M; Wirtz M; Hell R
    BMC Plant Biol; 2016 Nov; 16(1):247. PubMed ID: 27829370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CymR, the master regulator of cysteine metabolism in Staphylococcus aureus, controls host sulphur source utilization and plays a role in biofilm formation.
    Soutourina O; Poupel O; Coppée JY; Danchin A; Msadek T; Martin-Verstraete I
    Mol Microbiol; 2009 Jul; 73(2):194-211. PubMed ID: 19508281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cysteine and S-sulfocysteine biosynthesis in phototrophic bacteria.
    Hensel G; Trüper HG
    Arch Microbiol; 1976 Aug; 109(1-2):101-3. PubMed ID: 962465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulatory role of transcription factor SutR (YdcN) in sulfur utilization in Escherichia coli.
    Yamamoto K; Nakano M; Ishihama A
    Microbiology (Reading); 2015 Jan; 161(Pt 1):99-111. PubMed ID: 25406449
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolism of sulfur-containing amino acids in the dermatophyte Microsporum gypseum. II. Acidic amino acid derivatives.
    Kunert J
    J Basic Microbiol; 1985; 25(2):111-8. PubMed ID: 3925121
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of a Novel LysR Family Transcriptional Regulator Controlling Acquisition of Sulfur Sources in Acinetobacter baumannii.
    Pokhrel A; Dinh H; Li L; Hassan KA; Cain AK; Paulsen IT
    Microb Physiol; 2023; 33(1):27-35. PubMed ID: 36626888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of sulfur assimilation pathways in Burkholderia cenocepacia: identification of transcription factors CysB and SsuR and their role in control of target genes.
    Iwanicka-Nowicka R; Zielak A; Cook AM; Thomas MS; Hryniewicz MM
    J Bacteriol; 2007 Mar; 189(5):1675-88. PubMed ID: 16997956
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methionine-to-cysteine recycling in Klebsiella aerogenes.
    Seiflein TA; Lawrence JG
    J Bacteriol; 2001 Jan; 183(1):336-46. PubMed ID: 11114934
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Utilization of host-derived cysteine-containing peptides overcomes the restricted sulphur metabolism of Campylobacter jejuni.
    Vorwerk H; Mohr J; Huber C; Wensel O; Schmidt-Hohagen K; Gripp E; Josenhans C; Schomburg D; Eisenreich W; Hofreuter D
    Mol Microbiol; 2014 Sep; 93(6):1224-45. PubMed ID: 25074326
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The outer membrane TolC is involved in cysteine tolerance and overproduction in Escherichia coli.
    Wiriyathanawudhiwong N; Ohtsu I; Li ZD; Mori H; Takagi H
    Appl Microbiol Biotechnol; 2009 Jan; 81(5):903-13. PubMed ID: 18828007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pgt1, a glutathione transporter from the fission yeast Schizosaccharomyces pombe.
    Thakur A; Kaur J; Bachhawat AK
    FEMS Yeast Res; 2008 Sep; 8(6):916-29. PubMed ID: 18662319
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.