These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27482623)

  • 1. Electron Energy Loss Spectroscopy Investigation into Symmetry in Gold Trimer and Tetramer Plasmonic Nanoparticle Structures.
    Barrow SJ; Collins SM; Rossouw D; Funston AM; Botton GA; Midgley PA; Mulvaney P
    ACS Nano; 2016 Sep; 10(9):8552-63. PubMed ID: 27482623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping bright and dark modes in gold nanoparticle chains using electron energy loss spectroscopy.
    Barrow SJ; Rossouw D; Funston AM; Botton GA; Mulvaney P
    Nano Lett; 2014 Jul; 14(7):3799-808. PubMed ID: 24955651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale mapping of shifts in dark plasmon modes in sub 10 nm aluminum nanoantennas.
    Elibol K; Downing C; Hobbs RG
    Nanotechnology; 2022 Sep; 33(47):. PubMed ID: 35944508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of Plasmonic Metamolecule Modes in the Quantum Tunneling Regime.
    Scholl JA; Garcia-Etxarri A; Aguirregabiria G; Esteban R; Narayan TC; Koh AL; Aizpurua J; Dionne JA
    ACS Nano; 2016 Jan; 10(1):1346-54. PubMed ID: 26639023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-dimensional coupling of gold nanoparticle plasmons in self-assembled ring superstructures.
    Chang WS; Slaughter LS; Khanal BP; Manna P; Zubarev ER; Link S
    Nano Lett; 2009 Mar; 9(3):1152-7. PubMed ID: 19193117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic Nanolenses: Electrostatic Self-Assembly of Hierarchical Nanoparticle Trimers and Their Response to Optical and Electron Beam Stimuli.
    Lloyd JA; Ng SH; Liu AC; Zhu Y; Chao W; Coenen T; Etheridge J; Gómez DE; Bach U
    ACS Nano; 2017 Feb; 11(2):1604-1612. PubMed ID: 28165711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron energy-loss spectroscopy of surface plasmon activity in wrinkled gold structures.
    Mousavi M SS; Bicket IC; Bellido EP; Soleymani L; Botton GA
    J Chem Phys; 2020 Dec; 153(22):224703. PubMed ID: 33317278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observing Plasmon Damping Due to Adhesion Layers in Gold Nanostructures Using Electron Energy Loss Spectroscopy.
    Madsen SJ; Esfandyarpour M; Brongersma ML; Sinclair R
    ACS Photonics; 2017 Feb; 4(2):268-274. PubMed ID: 28944259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study.
    Myroshnychenko V; Nelayah J; Adamo G; Geuquet N; Rodríguez-Fernández J; Pastoriza-Santos I; MacDonald KF; Henrard L; Liz-Marzán LM; Zheludev NI; Kociak M; García de Abajo FJ
    Nano Lett; 2012 Aug; 12(8):4172-80. PubMed ID: 22746278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing Nanoparticle Plasmons with Electron Energy Loss Spectroscopy.
    Wu Y; Li G; Camden JP
    Chem Rev; 2018 Mar; 118(6):2994-3031. PubMed ID: 29215265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlative electron energy loss spectroscopy and cathodoluminescence spectroscopy on three-dimensional plasmonic split ring resonators.
    Bicket IC; Bellido EP; Meuret S; Polman A; Botton GA
    Microscopy (Oxf); 2018 Mar; 67(suppl_1):i40-i51. PubMed ID: 29584929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unveiling and Imaging Degenerate States in Plasmonic Nanoparticles with Nanometer Resolution.
    Myroshnychenko V; Nishio N; García de Abajo FJ; Förstner J; Yamamoto N
    ACS Nano; 2018 Aug; 12(8):8436-8446. PubMed ID: 30067900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studying substrate effects on localized surface plasmons in an individual silver nanoparticle using electron energy-loss spectroscopy.
    Fujiyoshi Y; Nemoto T; Kurata H
    Ultramicroscopy; 2017 Apr; 175():116-120. PubMed ID: 28236741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing Localized Surface Plasmons Using Electron Energy-Loss Spectroscopy.
    Cherqui C; Thakkar N; Li G; Camden JP; Masiello DJ
    Annu Rev Phys Chem; 2016 May; 67():331-57. PubMed ID: 27215817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements.
    Losquin A; Zagonel LF; Myroshnychenko V; Rodríguez-González B; Tencé M; Scarabelli L; Förstner J; Liz-Marzán LM; García de Abajo FJ; Stéphan O; Kociak M
    Nano Lett; 2015 Feb; 15(2):1229-37. PubMed ID: 25603194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers.
    Schubert I; Sigle W; van Aken PA; Trautmann C; Toimil-Molares ME
    Nanoscale; 2015 Mar; 7(11):4935-41. PubMed ID: 25690984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially resolved electron energy loss spectroscopy of crescent-shaped plasmonic antennas.
    Křápek V; Koh AL; Břínek L; Hrtoň M; Tomanec O; Kalousek R; Maier SA; Šikola T
    Opt Express; 2015 May; 23(9):11855-67. PubMed ID: 25969276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examining Substrate-Induced Plasmon Mode Splitting and Localization in Truncated Silver Nanospheres with Electron Energy Loss Spectroscopy.
    Li G; Cherqui C; Wu Y; Bigelow NW; Simmons PD; Rack PD; Masiello DJ; Camden JP
    J Phys Chem Lett; 2015 Jul; 6(13):2569-76. PubMed ID: 26266735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of experimental conditions on localized surface plasmon resonances measurement by electron energy loss spectroscopy.
    Horák M; Šikola T
    Ultramicroscopy; 2020 Sep; 216():113044. PubMed ID: 32535410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nearfield excited state imaging of bonding and antibonding plasmon modes in nanorod dimers via stimulated electron energy gain spectroscopy.
    Collette R; Garfinkel DA; Rack PD
    J Chem Phys; 2020 Jul; 153(4):044711. PubMed ID: 32752671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.