These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27482623)

  • 21. Probing plasmons in three dimensions by combining complementary spectroscopies in a scanning transmission electron microscope.
    Hachtel JA; Marvinney C; Mouti A; Mayo D; Mu R; Pennycook SJ; Lupini AR; Chisholm MF; Haglund RF; Pantelides ST
    Nanotechnology; 2016 Apr; 27(15):155202. PubMed ID: 26934391
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface-Enhanced Molecular Electron Energy Loss Spectroscopy.
    Konečná A; Neuman T; Aizpurua J; Hillenbrand R
    ACS Nano; 2018 May; 12(5):4775-4786. PubMed ID: 29641179
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D Imaging of Gap Plasmons in Vertically Coupled Nanoparticles by EELS Tomography.
    Haberfehlner G; Schmidt FP; Schaffernak G; Hörl A; Trügler A; Hohenau A; Hofer F; Krenn JR; Hohenester U; Kothleitner G
    Nano Lett; 2017 Nov; 17(11):6773-6777. PubMed ID: 28981295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Momentum-resolved EELS and CL study on 1D-plasmonic crystal prepared by FIB method.
    Yasuhara A; Shibata M; Yamamoto W; Machfuudzoh I; Yanagimoto S; Sannomiya T
    Microscopy (Oxf); 2024 May; ():. PubMed ID: 38702889
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Direct Observation of Plasmon Band Formation and Delocalization in Quasi-Infinite Nanoparticle Chains.
    Mayer M; Potapov PL; Pohl D; Steiner AM; Schultz J; Rellinghaus B; Lubk A; König TAF; Fery A
    Nano Lett; 2019 Jun; 19(6):3854-3862. PubMed ID: 31117756
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electron Energy Loss Spectroscopy imaging of surface plasmons at the nanometer scale.
    Colliex C; Kociak M; Stéphan O
    Ultramicroscopy; 2016 Mar; 162():A1-A24. PubMed ID: 26778606
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Manipulating acoustic and plasmonic modes in gold nanostars.
    Chatterjee S; Ricciardi L; Deitz JI; Williams REA; McComb DW; Strangi G
    Nanoscale Adv; 2019 Jul; 1(7):2690-2698. PubMed ID: 36132721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of local chemical states of lithium and their spatial mapping by scanning transmission electron microscopy, electron energy-loss spectroscopy and hyperspectral image analysis.
    Muto S; Tatsumi K
    Microscopy (Oxf); 2017 Feb; 66(1):39-49. PubMed ID: 27655938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and Electronic Excitations.
    Iberi V; Mirsaleh-Kohan N; Camden JP
    J Phys Chem Lett; 2013 Apr; 4(7):1070-8. PubMed ID: 26282023
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopy.
    Terauchi M
    Microsc Res Tech; 2006 Jul; 69(7):531-7. PubMed ID: 16718665
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Plasmon modes of a silver thin film taper probed with STEM-EELS.
    Schmidt FP; Ditlbacher H; Trügler A; Hohenester U; Hohenau A; Hofer F; Krenn JR
    Opt Lett; 2015 Dec; 40(23):5670-3. PubMed ID: 26625078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Study of atomic resolved plasmon-loss image by spherical aberration-corrected STEM-EELS method.
    Yamazaki T; Kotaka Y; Tsukada M; Kataoka Y
    Ultramicroscopy; 2010 Aug; 110(9):1161-5. PubMed ID: 20451326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlated 3D Nanoscale Mapping and Simulation of Coupled Plasmonic Nanoparticles.
    Haberfehlner G; Trügler A; Schmidt FP; Hörl A; Hofer F; Hohenester U; Kothleitner G
    Nano Lett; 2015 Nov; 15(11):7726-30. PubMed ID: 26495933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electron energy loss spectroscopy on semiconductor heterostructures for optoelectronics and photonics applications.
    Eljarrat A; López-Conesa L; Estradé S; Peiró F
    J Microsc; 2016 May; 262(2):142-50. PubMed ID: 26366876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Site-selective CO disproportionation mediated by localized surface plasmon resonance excited by electron beam.
    Yang WD; Wang C; Fredin LA; Lin PA; Shimomoto L; Lezec HJ; Sharma R
    Nat Mater; 2019 Jun; 18(6):614-619. PubMed ID: 30988449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coupling of Surface Plasmon Modes and Refractive Index Sensitivity of Hollow Silver Nanoprism.
    Zhang KJ; Lu DB; Da B; Ding ZJ
    Sci Rep; 2018 Oct; 8(1):15993. PubMed ID: 30375478
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Full Three-Dimensonal Reconstruction of the Dyadic Green Tensor from Electron Energy Loss Spectroscopy of Plasmonic Nanoparticles.
    Hörl A; Trügler A; Hohenester U
    ACS Photonics; 2015 Oct; 2(10):1429-1435. PubMed ID: 26523284
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface plasmon mapping of dumbbell-shaped gold nanorods: the effect of silver coating.
    Rodríguez-González B; Attouchi F; Cardinal MF; Myroshnychenko V; Stéphan O; García de Abajo FJ; Liz-Marzán LM; Kociak M
    Langmuir; 2012 Jun; 28(24):9063-70. PubMed ID: 22452636
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoscale probing of bandgap states on oxide particles using electron energy-loss spectroscopy.
    Liu Q; March K; Crozier PA
    Ultramicroscopy; 2017 Jul; 178():2-11. PubMed ID: 27432780
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-energy resolution electron energy-loss spectroscopy study of interband transitions characteristic to single-walled carbon nanotubes.
    Sato Y; Terauchi M
    Microsc Microanal; 2014 Jun; 20(3):807-14. PubMed ID: 24685359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.