These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 27482722)

  • 1. Unprecedently Large-Scale Kinase Inhibitor Set Enabling the Accurate Prediction of Compound-Kinase Activities: A Way toward Selective Promiscuity by Design?
    Christmann-Franck S; van Westen GJ; Papadatos G; Beltran Escudie F; Roberts A; Overington JP; Domine D
    J Chem Inf Model; 2016 Sep; 56(9):1654-75. PubMed ID: 27482722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The resistance tetrad: amino acid hotspots for kinome-wide exploitation of drug-resistant protein kinase alleles.
    Bailey FP; Andreev VI; Eyers PA
    Methods Enzymol; 2014; 548():117-46. PubMed ID: 25399644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A broad activity screen in support of a chemogenomic map for kinase signalling research and drug discovery.
    Gao Y; Davies SP; Augustin M; Woodward A; Patel UA; Kovelman R; Harvey KJ
    Biochem J; 2013 Apr; 451(2):313-28. PubMed ID: 23398362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioluminescent kinase strips: A novel approach to targeted and flexible kinase inhibitor profiling.
    Hennek J; Alves J; Yao E; Goueli SA; Zegzouti H
    Anal Biochem; 2016 Feb; 495():9-20. PubMed ID: 26628096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Doing more than just the structure-structural genomics in kinase drug discovery.
    Marsden BD; Knapp S
    Curr Opin Chem Biol; 2008 Feb; 12(1):40-5. PubMed ID: 18267130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel kinase inhibitors by reshuffling ligand functionalities across the human kinome.
    Vidović D; Muskal SM; Schürer SC
    J Chem Inf Model; 2012 Dec; 52(12):3107-15. PubMed ID: 23121521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using Bioluminescent Kinase Profiling Strips to Identify Kinase Inhibitor Selectivity and Promiscuity.
    Zegzouti H; Hennek J; Goueli SA
    Methods Mol Biol; 2016; 1360():59-73. PubMed ID: 26501902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors.
    Vijayan RS; He P; Modi V; Duong-Ly KC; Ma H; Peterson JR; Dunbrack RL; Levy RM
    J Med Chem; 2015 Jan; 58(1):466-79. PubMed ID: 25478866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pocketome of human kinases: prioritizing the ATP binding sites of (yet) untapped protein kinases for drug discovery.
    Volkamer A; Eid S; Turk S; Jaeger S; Rippmann F; Fulle S
    J Chem Inf Model; 2015 Mar; 55(3):538-49. PubMed ID: 25557645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extending kinome coverage by analysis of kinase inhibitor broad profiling data.
    Jacoby E; Tresadern G; Bembenek S; Wroblowski B; Buyck C; Neefs JM; Rassokhin D; Poncelet A; Hunt J; van Vlijmen H
    Drug Discov Today; 2015 Jun; 20(6):652-8. PubMed ID: 25596550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of specificity-determining residues for small-molecule kinase inhibitors.
    Caffrey DR; Lunney EA; Moshinsky DJ
    BMC Bioinformatics; 2008 Nov; 9():491. PubMed ID: 19032760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What general conclusions can we draw from kinase profiling data sets?
    Sutherland JJ; Gao C; Cahya S; Vieth M
    Biochim Biophys Acta; 2013 Jul; 1834(7):1425-33. PubMed ID: 23333421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic assessment of structure-promiscuity relationships between different types of kinase inhibitors.
    Hu H; Bajorath J
    Bioorg Med Chem; 2021 Jul; 41():116226. PubMed ID: 34082305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data structures for computational compound promiscuity analysis and exemplary applications to inhibitors of the human kinome.
    Miljković F; Bajorath J
    J Comput Aided Mol Des; 2020 Jan; 34(1):1-10. PubMed ID: 31792884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic computational identification of promiscuity cliff pathways formed by inhibitors of the human kinome.
    Miljković F; Vogt M; Bajorath J
    J Comput Aided Mol Des; 2019 Jun; 33(6):559-572. PubMed ID: 30915709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tinkering outside the kinase ATP box: allosteric (type IV) and bivalent (type V) inhibitors of protein kinases.
    Cox KJ; Shomin CD; Ghosh I
    Future Med Chem; 2011 Jan; 3(1):29-43. PubMed ID: 21428824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinase-kernel models: accurate in silico screening of 4 million compounds across the entire human kinome.
    Martin E; Mukherjee P
    J Chem Inf Model; 2012 Jan; 52(1):156-70. PubMed ID: 22133092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational proteomics of biomolecular interactions in the sequence and structure space of the tyrosine kinome: deciphering the molecular basis of the kinase inhibitors selectivity.
    Verkhivker GM
    Proteins; 2007 Mar; 66(4):912-29. PubMed ID: 17173284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fragment-based approaches to the discovery of kinase inhibitors.
    Mortenson PN; Berdini V; O'Reilly M
    Methods Enzymol; 2014; 548():69-92. PubMed ID: 25399642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping Biological Activities to Different Types of Molecular Scaffolds: Exemplary Application to Protein Kinase Inhibitors.
    Dimova D; Bajorath J
    Methods Mol Biol; 2018; 1825():327-337. PubMed ID: 30334211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.