BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27482734)

  • 1. Mechanical Robustness of Graphene on Flexible Transparent Substrates.
    Kang MH; Prieto López LO; Chen B; Teo K; Williams JA; Milne WI; Cole MT
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22506-15. PubMed ID: 27482734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal Stability of Metal-Chloride-Doped Chemical-Vapour-Deposited Graphene.
    Kang MH; Milne WI; Cole MT
    Chemphyschem; 2016 Aug; 17(16):2545-50. PubMed ID: 27165783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics.
    Gomez De Arco L; Zhang Y; Schlenker CW; Ryu K; Thompson ME; Zhou C
    ACS Nano; 2010 May; 4(5):2865-73. PubMed ID: 20394355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hot-Roll-Pressing Mediated Transfer of Chemical Vapor Deposition Graphene for Transparent and Flexible Touch Screen with Low Sheet-Resistance.
    Guo C; Kong X; Ji H
    J Nanosci Nanotechnol; 2018 Jun; 18(6):4337-4342. PubMed ID: 29442784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible Indium-Tin Oxide Crystal on Plastic Substrates Supported by Graphene Monolayer.
    Lee SJ; Kim Y; Hwang JY; Lee JH; Jung S; Park H; Cho S; Nahm S; Yang WS; Kim H; Han SH
    Sci Rep; 2017 Jun; 7(1):3131. PubMed ID: 28600488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transparent Molecular Adhesive Enabling Mechanically Stable ITO Thin Films.
    Bok S; Seok HJ; Kim YA; Park JH; Kim J; Kang J; Kim HK; Lim B
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3463-3470. PubMed ID: 33416317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible transparent graphene laminates
    Serrano IG; Panda J; Edvinsson T; Kamalakar MV
    Nanoscale Adv; 2020 Aug; 2(8):3156-3163. PubMed ID: 36134291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Stretchable and Flexible Graphene/ITO Hybrid Transparent Electrode.
    Liu J; Yi Y; Zhou Y; Cai H
    Nanoscale Res Lett; 2016 Dec; 11(1):108. PubMed ID: 26920153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding of the Mechanism for Laser Ablation-Assisted Patterning of Graphene/ITO Double Layers: Role of Effective Thermal Energy Transfer.
    Ryu HS; Kim HS; Kim D; Lee SJ; Choi W; Kwon SJ; Han JH; Cho ES
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32872492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Integrity Preserving and Residue-Free Transfer of Large-Area Wrinkled Graphene onto Polymeric Substrates.
    Narute P; Sharbidre RS; Lee CJ; Park BC; Jung HJ; Kim JH; Hong SG
    ACS Nano; 2022 Jun; 16(6):9871-9882. PubMed ID: 35666252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uniformity of large-area bilayer graphene grown by chemical vapor deposition.
    Sheng Y; Rong Y; He Z; Fan Y; Warner JH
    Nanotechnology; 2015 Oct; 26(39):395601. PubMed ID: 26349521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimized poly(methyl methacrylate)-mediated graphene-transfer process for fabrication of high-quality graphene layer.
    Park H; Lim C; Lee CJ; Kang J; Kim J; Choi M; Park H
    Nanotechnology; 2018 Oct; 29(41):415303. PubMed ID: 30028310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Enhanced Electromechanical Stability of Large-Area Graphene with Increased Interfacial Adhesion Energy by Electrothermal-Direct Transfer for Transparent Electrodes.
    Kim J; Kim GG; Kim S; Jung W
    ACS Appl Mater Interfaces; 2016 Sep; 8(35):23396-403. PubMed ID: 27564120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanically robust 39 GHz cut-off frequency graphene field effect transistors on flexible substrates.
    Wei W; Pallecchi E; Haque S; Borini S; Avramovic V; Centeno A; Amaia Z; Happy H
    Nanoscale; 2016 Aug; 8(29):14097-103. PubMed ID: 27396243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Low-Temperature 3D Integration of Silicon Nanowires on Flexible Substrates.
    Kim Y; Kim HJ; Kim JH; Choi DG; Choi JH; Jung JY; Jeon S; Lee ES; Jeong JH; Lee J
    Small; 2015 Aug; 11(32):3995-4001. PubMed ID: 25943430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface Properties of CVD-Grown Graphene Transferred by Wet and Dry Transfer Processes.
    Yoon MA; Kim C; Kim JH; Lee HJ; Kim KS
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultraclean patterned transfer of single-layer graphene by recyclable pressure sensitive adhesive films.
    Kim SJ; Choi T; Lee B; Lee S; Choi K; Park JB; Yoo JM; Choi YS; Ryu J; Kim P; Hone J; Hong BH
    Nano Lett; 2015 May; 15(5):3236-40. PubMed ID: 25844634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid transparent conductive film on flexible glass formed by hot-pressing graphene on a silver nanowire mesh.
    Chen TL; Ghosh DS; Mkhitaryan V; Pruneri V
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11756-61. PubMed ID: 24164641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer of CVD-grown monolayer graphene onto arbitrary substrates.
    Suk JW; Kitt A; Magnuson CW; Hao Y; Ahmed S; An J; Swan AK; Goldberg BB; Ruoff RS
    ACS Nano; 2011 Sep; 5(9):6916-24. PubMed ID: 21894965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale plasma patterning of transparent graphene electrode on flexible substrates.
    Kim JH; Ko E; Hwang J; Pham XH; Lee JH; Lee SH; Tran VK; Kim JH; Park JG; Choo J; Han KN; Seong GH
    Langmuir; 2015 Mar; 31(9):2914-21. PubMed ID: 25692852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.