These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 27482855)

  • 41. Adaptive velocity-dependent proportional-integral controller for high-speed atomic force microscopy.
    Liu L; Wu S; Wang YY; Hu XD; Hu XT
    J Microsc; 2019 Aug; 275(2):107-114. PubMed ID: 31145469
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Low-voltage and high-performance buzzer-scanner based streamlined atomic force microscope system.
    Wang WM; Huang KY; Huang HF; Hwang IS; Hwu ET
    Nanotechnology; 2013 Nov; 24(45):455503. PubMed ID: 24141269
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-Resolution and High-Speed Atomic Force Microscope Imaging.
    Zuttion F; Redondo-Morata L; Marchesi A; Casuso I
    Methods Mol Biol; 2018; 1814():181-200. PubMed ID: 29956233
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modification of the AFM Sensor by a Precisely Regulated Air Stream to Increase Imaging Speed and Accuracy in the Contact Mode.
    Dzedzickis A; Bucinskas V; Viržonis D; Sesok N; Ulcinas A; Iljin I; Sutinys E; Petkevicius S; Gargasas J; Morkvenaite-Vilkonciene I
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30115868
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Feedback based simultaneous correction of imaging artifacts due to geometrical and mechanical cross-talk and tip-sample stick in atomic force microscopy.
    Shegaonkar AC; Salapaka SM
    Rev Sci Instrum; 2007 Oct; 78(10):103706. PubMed ID: 17979427
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Indirect identification and compensation of lateral scanner resonances in atomic force microscopes.
    Burns DJ; Youcef-Toumi K; Fantner GE
    Nanotechnology; 2011 Aug; 22(31):315701. PubMed ID: 21727318
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy.
    Liu H; Ahmed Z; Vranjkovic S; Parschau M; Mandru AO; Hug HJ
    Beilstein J Nanotechnol; 2022; 13():1120-1140. PubMed ID: 36299563
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimizing force spectroscopy by modifying commercial cantilevers: Improved stability, precision, and temporal resolution.
    Edwards DT; Perkins TT
    J Struct Biol; 2017 Jan; 197(1):13-25. PubMed ID: 26804584
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Making a commercial atomic force microscope more accurate and faster using positive position feedback control.
    Mahmood IA; Moheimani SO
    Rev Sci Instrum; 2009 Jun; 80(6):063705. PubMed ID: 19566208
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-speed atomic force microscopy imaging of live mammalian cells.
    Shibata M; Watanabe H; Uchihashi T; Ando T; Yasuda R
    Biophys Physicobiol; 2017; 14():127-135. PubMed ID: 28900590
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Separate-type scanner and wideband high-voltage amplifier for atomic-resolution and high-speed atomic force microscopy.
    Miyata K; Usho S; Yamada S; Furuya S; Yoshida K; Asakawa H; Fukuma T
    Rev Sci Instrum; 2013 Apr; 84(4):043705. PubMed ID: 23635201
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-speed atomic force microscopy in slow motion--understanding cantilever behaviour at high scan velocities.
    Payton OD; Picco L; Robert D; Raman A; Homer ME; Champneys AR; Miles MJ
    Nanotechnology; 2012 May; 23(20):205704. PubMed ID: 22543565
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Development of a detachable high speed miniature scanning probe microscope for large area substrates inspection.
    Sadeghian H; Herfst R; Winters J; Crowcombe W; Kramer G; van den Dool T; van Es MH
    Rev Sci Instrum; 2015 Nov; 86(11):113706. PubMed ID: 26628143
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Accurate measurement of Atomic Force Microscope cantilever deflection excluding tip-surface contact with application to force calibration.
    Slattery AD; Blanch AJ; Quinton JS; Gibson CT
    Ultramicroscopy; 2013 Aug; 131():46-55. PubMed ID: 23685172
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Atomic (scanning) force microscopy in cardiovascular research.
    Arnsdorf MF; Xu S
    J Cardiovasc Electrophysiol; 1996 Jul; 7(7):639-52. PubMed ID: 8807410
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Active Damping of a Piezoelectric Tube Scanner using Self-Sensing Piezo Actuation.
    Kuiper S; Schitter G
    Mechatronics (Oxf); 2010 Sep; 20(6):656-665. PubMed ID: 26412944
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cantilever arrays with self-aligned nanotips of uniform height.
    Koelmans WW; Peters T; Berenschot E; de Boer MJ; Siekman MH; Abelmann L
    Nanotechnology; 2012 Apr; 23(13):135301. PubMed ID: 22418861
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications.
    Acosta JC; Polesel-Maris J; Thoyer F; Xie H; Haliyo S; Régnier S
    Nanotechnology; 2013 Feb; 24(6):065502. PubMed ID: 23340092
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A rate adaptive control method for Improving the imaging speed of atomic force microscopy.
    Wang Y; Wan J; Hu X; Xu L; Wu S; Hu X
    Ultramicroscopy; 2015 Aug; 155():49-54. PubMed ID: 25942751
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel atomic force microscope operating in liquid for in situ investigation of electrochemical preparation of porous alumina.
    Zhang H; Zhang D; He Y
    Microsc Res Tech; 2005 Feb; 66(2-3):126-31. PubMed ID: 15880512
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.