BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27482971)

  • 1. Comparison of Different TMAO Force Fields and Their Impact on the Folding Equilibrium of a Hydrophobic Polymer.
    Rodríguez-Ropero F; Rötzscher P; van der Vegt NF
    J Phys Chem B; 2016 Sep; 120(34):8757-67. PubMed ID: 27482971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Does a Hydrophobic Macromolecule Respond to a Mixed Osmolyte Environment?
    Tah I; Mondal J
    J Phys Chem B; 2016 Oct; 120(42):10969-10978. PubMed ID: 27700087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osmolyte trimethylamine-N-oxide does not affect the strength of hydrophobic interactions: origin of osmolyte compatibility.
    Athawale MV; Dordick JS; Garde S
    Biophys J; 2005 Aug; 89(2):858-66. PubMed ID: 15894642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How osmolytes influence hydrophobic polymer conformations: A unified view from experiment and theory.
    Mondal J; Halverson D; Li IT; Stirnemann G; Walker GC; Berne BJ
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9270-5. PubMed ID: 26170324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trimethylamine
    Liao YT; Manson AC; DeLyser MR; Noid WG; Cremer PS
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):2479-2484. PubMed ID: 28228526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanism for the preferential exclusion of TMAO from protein surfaces.
    Canchi DR; Jayasimha P; Rau DC; Makhatadze GI; Garcia AE
    J Phys Chem B; 2012 Oct; 116(40):12095-104. PubMed ID: 22970901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of aqueous solutions of trimethylamine-N-oxide on pressure induced modifications of hydrophobic interactions.
    Sarma R; Paul S
    J Chem Phys; 2012 Sep; 137(9):094502. PubMed ID: 22957576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the osmolyte TMAO (Trimethylamine-N-oxide) on aqueous hydrophobic contact-pair interactions.
    Macdonald RD; Khajehpour M
    Biophys Chem; 2013 Dec; 184():101-7. PubMed ID: 24216065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure, Peptides, and a Piezolyte: Structural Analysis of the Effects of Pressure and Trimethylamine-
    Folberth A; Polák J; Heyda J; van der Vegt NFA
    J Phys Chem B; 2020 Jul; 124(30):6508-6519. PubMed ID: 32615760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enthalpy-entropy contributions to salt and osmolyte effects on molecular-scale hydrophobic hydration and interactions.
    Athawale MV; Sarupria S; Garde S
    J Phys Chem B; 2008 May; 112(18):5661-70. PubMed ID: 18447346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous Impacts of Protein-Stabilizing Osmolytes on Hydrophobic Interaction.
    Mukherjee M; Mondal J
    J Phys Chem B; 2018 Jul; 122(27):6922-6930. PubMed ID: 29901998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the urea induced hydrophobic collapse of a water soluble polymer.
    Rodríguez-Ropero F; van der Vegt NF
    Phys Chem Chem Phys; 2015 Apr; 17(13):8491-8. PubMed ID: 25684267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stabilizing effect of TMAO on globular PNIPAM states: preferential attraction induces preferential hydration.
    Schroer MA; Michalowsky J; Fischer B; Smiatek J; Grübel G
    Phys Chem Chem Phys; 2016 Nov; 18(46):31459-31470. PubMed ID: 27827475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscopic significance of hydrophobic residues in the protein-stabilizing effect of trimethylamine N-oxide (TMAO).
    Yang Y; Mu Y; Li W
    Phys Chem Chem Phys; 2016 Aug; 18(32):22081-8. PubMed ID: 27147501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutual Exclusion of Urea and Trimethylamine N-Oxide from Amino Acids in Mixed Solvent Environment.
    Ganguly P; Hajari T; Shea JE; van der Vegt NF
    J Phys Chem Lett; 2015 Feb; 6(4):581-5. PubMed ID: 26262470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct osmolyte-macromolecule interactions confer entropic stability to folded states.
    Rodríguez-Ropero F; van der Vegt NF
    J Phys Chem B; 2014 Jul; 118(26):7327-34. PubMed ID: 24927256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation.
    Wang A; Bolen DW
    Biochemistry; 1997 Jul; 36(30):9101-8. PubMed ID: 9230042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How does trimethylamine N-oxide counteract the denaturing activity of urea?
    Graziano G
    Phys Chem Chem Phys; 2011 Oct; 13(39):17689-95. PubMed ID: 21894338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When does trimethylamine N-oxide fold a polymer chain and urea unfold it?
    Mondal J; Stirnemann G; Berne BJ
    J Phys Chem B; 2013 Jul; 117(29):8723-32. PubMed ID: 23800089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein Stability in TMAO and Mixed Urea-TMAO Solutions.
    Ganguly P; Polák J; van der Vegt NFA; Heyda J; Shea JE
    J Phys Chem B; 2020 Jul; 124(29):6181-6197. PubMed ID: 32495623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.