These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 27483327)

  • 1. Combining Coagulation/MIEX with Biological Activated Carbon Treatment to Control Organic Fouling in the Microfiltration of Secondary Effluent.
    Pramanik BK; Roddick FA; Fan L
    Membranes (Basel); 2016 Jul; 6(3):. PubMed ID: 27483327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of biological activated carbon pre-treatment to control organic fouling in the microfiltration of biologically treated secondary effluent.
    Pramanik BK; Roddick FA; Fan L
    Water Res; 2014 Oct; 63():147-57. PubMed ID: 25000197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term operation of biological activated carbon pre-treatment for microfiltration of secondary effluent: Correlation between the organic foulants and fouling potential.
    Pramanik BK; Roddick FA; Fan L
    Water Res; 2016 Mar; 90():405-414. PubMed ID: 26773606
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined BAC and MIEX pre-treatment of secondary wastewater effluent to reduce fouling of nanofiltration membranes.
    Aryal A; Sathasivan A; Heitz A; Zheng G; Nikraz H; Ginige MP
    Water Res; 2015 Mar; 70():214-23. PubMed ID: 25540835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of biological activated carbon pre-treatment on the hydrophilic fraction of effluent organic matter for mitigating fouling in microfiltration.
    Pramanik BK; Roddick FA; Fan L
    Environ Technol; 2018 Sep; 39(17):2243-2250. PubMed ID: 28689477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-rate MIEX filtration for simultaneous removal of phosphorus and membrane foulants from secondary effluent.
    Kim HC
    Water Res; 2015 Feb; 69():40-50. PubMed ID: 25463930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of ozonation and biological activated carbon filtration on ceramic membrane fouling.
    Ibn Abdul Hamid K; Sanciolo P; Gray S; Duke M; Muthukumaran S
    Water Res; 2017 Dec; 126():308-318. PubMed ID: 28965033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient control of membrane fouling in MF by removal of biopolymers: Comparison of various pretreatments.
    Kimura K; Oki Y
    Water Res; 2017 May; 115():172-179. PubMed ID: 28279938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Importance of the order in enhancing EfOM removal by combination of BAC and MIEX(®).
    Aryal A; Sathasivan A
    Water Sci Technol; 2011; 64(11):2325-32. PubMed ID: 22156139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane foulants and fouling mechanisms in microfiltration and ultrafiltration of an activated sludge effluent.
    Nguyen ST; Roddick FA; Harris JL
    Water Sci Technol; 2010; 62(9):1975-83. PubMed ID: 21045321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of membrane fouling control by integrated magnetic ion exchange and coagulation.
    Huang H; Cho HH; Jacangelo JG; Schwab KJ
    Environ Sci Technol; 2012 Oct; 46(19):10711-7. PubMed ID: 22924557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of magnetic ion-exchange resin addition during coagulation on floc properties and membrane filtration.
    Choi YH; Kweon JH; Jeong YM; Kwon S; Kim HS
    Water Environ Res; 2010 Mar; 82(3):259-66. PubMed ID: 20369570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of organic matter removals in single-component and bi-component systems using enhanced coagulation and magnetic ion exchange (MIEX) adsorption.
    Chen Y; Xu W; Zhu H; Wei D; Wang N; Li M
    Chemosphere; 2018 Nov; 210():672-682. PubMed ID: 30031997
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison study of in-situ coagulation and magnetic ion exchange (MIEX) as pre-treatments for ultrafiltration: Evaluating effectiveness of organic matters removals and fouling mitigation.
    Xu W; Chen Y; Liang H; Sang G; Wei D; Wang D; Du B
    Chemosphere; 2019 Jan; 214():633-641. PubMed ID: 30292045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous removal of phosphorus and EfOM using MIEX, coagulation, and low-pressure membrane filtration.
    Kim HC; Timmes TC; Dempsey BA
    Environ Technol; 2015; 36(24):3167-75. PubMed ID: 26017783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of effluent organic matter fractions responsible for low-pressure membrane fouling.
    Filloux E; Gallard H; Croue JP
    Water Res; 2012 Nov; 46(17):5531-5540. PubMed ID: 22884373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of coagulation and adsorption on DOC fractions of secondary effluent and resulting fouling behaviour in ultrafiltration.
    Haberkamp J; Ruhl AS; Ernst M; Jekel M
    Water Res; 2007 Sep; 41(17):3794-802. PubMed ID: 17585987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimization of short-term low-pressure membrane fouling using a magnetic ion exchange (MIEX(®)) resin.
    Jutaporn P; Singer PC; Cory RM; Coronell O
    Water Res; 2016 Jul; 98():225-34. PubMed ID: 27107140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of turbidity on micropollutant removal and membrane fouling by MIEX/ultrafiltration hybrid process.
    Chen Y; Xu W; Zhu H; Wei D; He F; Wang D; Du B; Wei Q
    Chemosphere; 2019 Feb; 216():488-498. PubMed ID: 30384318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of magnetic ion exchange pretreatment on low pressure membrane filtration of natural surface water.
    Huang H; Cho HH; Schwab KJ; Jacangelo JG
    Water Res; 2012 Nov; 46(17):5483-5490. PubMed ID: 22929562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.