BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27483934)

  • 1. Characterization of Zn(O,S) Buffer Layers for Cu(In,Ga)Se2 Solar Cells.
    Choi JH; Jung SH; Chung CW
    J Nanosci Nanotechnol; 2016 May; 16(5):5378-83. PubMed ID: 27483934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soft X-ray Spectroscopy of a Complex Heterojunction in High-Efficiency Thin-Film Photovoltaics: Intermixing and Zn Speciation at the Zn(O,S)/Cu(In,Ga)Se
    Mezher M; Garris R; Mansfield LM; Blum M; Hauschild D; Horsley K; Duncan DA; Yang W; Bär M; Weinhardt L; Ramanathan K; Heske C
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33256-33263. PubMed ID: 27934158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of energy band alignment at the Zn(1-x)Mg(x)O/Cu(In,Ga)Se2 interface for Cd-free Cu(In,Ga)Se2 solar cells.
    Lee CS; Larina L; Shin YM; Al-Ammar EA; Ahn BT
    Phys Chem Chem Phys; 2012 Apr; 14(14):4789-95. PubMed ID: 22382807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of the Electrical Properties of a Cu(In,Ga)Se₂ Solar Cell Based on a ZnS Buffer Layer from Radio Frequency Magnetron Sputtering.
    Kim HS; Kim G; Kim E; Cho SJ; Lee DJ; Choi SG; Shan F; Kim SJ
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1799-1803. PubMed ID: 30469270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and optical properties of ZnS thin films deposited by RF magnetron sputtering.
    Hwang DH; Ahn JH; Hui KN; Hui KS; Son YG
    Nanoscale Res Lett; 2012 Jan; 7(1):26. PubMed ID: 22221917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the Performance of Oxygen-Rich Zn(O,S) Buffers Fabricated by Sputtering Deposition and Zn(O,S)/Cu(In,Ga)(S,Se)
    Li Y; Zhuang D; Zhao M; Wang C; Tong H; Dong L; Tao S; Wang H
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24435-24446. PubMed ID: 35580322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Oxygen Gas Ratio on the Properties of Aluminum-Doped Zinc Oxide Films Prepared by Radio Frequency Magnetron Sputtering.
    Kim M; Jang YJ; Jung HS; Song W; Kang H; Kim EK; Kim D; Yi J; Lee J
    J Nanosci Nanotechnol; 2016 May; 16(5):5138-42. PubMed ID: 27483888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sputtered In
    Ho WH; Hsu CH; Wei SY; Cai CH; Huang WC; Lai CH
    ACS Appl Mater Interfaces; 2017 May; 9(20):17586-17594. PubMed ID: 28470058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adherent and Conformal Zn(S,O,OH) Thin Films by Rapid Chemical Bath Deposition with Hexamethylenetetramine Additive.
    Opasanont B; Van KT; Kuba AG; Choudhury KR; Baxter JB
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11516-25. PubMed ID: 25951891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of sputtering power on structural and optical properties of radio frequency-sputtered In2S3 thin films.
    Hwang DH; Cho S; Hui KN; Son YG
    J Nanosci Nanotechnol; 2014 Dec; 14(12):8978-81. PubMed ID: 25970994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of Temperature on the Preparation of Al/Zn3N2 Thin Films Using Magnetron Reactive Sputtering].
    Feng JQ; Chen JF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Aug; 35(8):2287-91. PubMed ID: 26672310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparative Study of (Cd,Zn)S Buffer Layers for Cu(In,Ga)Se
    Bae D
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32244710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rubidium Fluoride Post-Deposition Treatment: Impact on the Chemical Structure of the Cu(In,Ga)Se
    Kreikemeyer-Lorenzo D; Hauschild D; Jackson P; Friedlmeier TM; Hariskos D; Blum M; Yang W; Reinert F; Powalla M; Heske C; Weinhardt L
    ACS Appl Mater Interfaces; 2018 Oct; 10(43):37602-37608. PubMed ID: 30272438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of band structure at the Zn(S,O,OH)/Cu(In,Ga)Se2 interface via rapid thermal annealing and their effect on the photovoltaic properties.
    Shin DH; Kim ST; Kim JH; Kang HJ; Ahn BT; Kwon H
    ACS Appl Mater Interfaces; 2013 Dec; 5(24):12921-7. PubMed ID: 24175717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid qualitative and quantitative analysis of elemental composition of Cu(In, Ga)Se
    Xiu J; Liu S; Fu S; Wang T; Meng M; Liu Y
    Appl Opt; 2019 Feb; 58(4):1040-1047. PubMed ID: 30874153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic-Scale Interface Modification Improves the Performance of Cu(In
    El Hajraoui K; Colombara D; Virtuoso J; Waechter R; Deepak FL; Sadewasser S
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44207-44213. PubMed ID: 34515476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Two-Step Magnetron Sputtering Approach for the Synthesis of Cu
    Zaki MY; Sava F; Simandan ID; Buruiana AT; Stavarache I; Bocirnea AE; Mihai C; Velea A; Galca AC
    ACS Omega; 2022 Jul; 7(27):23800-23814. PubMed ID: 35847258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface Formation between CdS and Alkali Postdeposition-Treated Cu(In,Ga)Se
    Yang P; Wilks RG; Yang W; Bär M
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6688-6698. PubMed ID: 31912731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Temperature As-Grown Crystalline β-Ga
    Ilhom S; Mohammad A; Shukla D; Grasso J; Willis BG; Okyay AK; Biyikli N
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8538-8551. PubMed ID: 33566585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of Morphological and Chemical Properties at p-n Junction of Cu(In,Ga)Se
    Lee WJ; Cho DH; Wi JH; Yu JH; Kim WJ; Kang C; Kang SJ; Chung YD
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48611-48621. PubMed ID: 34636529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.