These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 27484186)
1. Remediation of mercury-polluted soils using artificial wetlands. García-Mercadoa HD; Fernándezb G; Garzón-Zúñigac MA; Durán-Domínguez-de-Bazúaa MD Int J Phytoremediation; 2017 Jan; 19(1):3-13. PubMed ID: 27484186 [TBL] [Abstract][Full Text] [Related]
2. Fate of mercury in a terrestial biological lab process using García-Mercado HD; Fernández-Villagómez G; Garzón-Zúñiga MA; Durán-Domínguez-de-Bazúa MDC Int J Phytoremediation; 2019; 21(12):1170-1178. PubMed ID: 31165622 [TBL] [Abstract][Full Text] [Related]
3. Constructed wetlands as green tools for management of boron mine wastewater. Türker OC; Türe C; Böcük H; Yakar A Int J Phytoremediation; 2014; 16(6):537-53. PubMed ID: 24912241 [TBL] [Abstract][Full Text] [Related]
4. Nitrous oxide emission from polyculture constructed wetlands: effect of plant species. Wang Y; Inamori R; Kong H; Xu K; Inamori Y; Kondo T; Zhang J Environ Pollut; 2008 Mar; 152(2):351-60. PubMed ID: 17655987 [TBL] [Abstract][Full Text] [Related]
5. Synchrotron micro-scale measurement of metal distributions in Phragmites australis and Typha latifolia root tissue from an urban brownfield site. Feng H; Qian Y; Gallagher FJ; Zhang W; Yu L; Liu C; Jones KW; Tappero R J Environ Sci (China); 2016 Mar; 41():172-182. PubMed ID: 26969063 [TBL] [Abstract][Full Text] [Related]
6. Study on the reduction of atmospheric mercury emissions from mine waste enriched soils through native grass cover in the Mt. Amiata region of Italy. Fantozzi L; Ferrara R; Dini F; Tamburello L; Pirrone N; Sprovieri F Environ Res; 2013 Aug; 125():69-74. PubMed ID: 23477569 [TBL] [Abstract][Full Text] [Related]
7. Short term uptake and transport process for metformin in roots of Phragmites australis and Typha latifolia. Cui H; Hense BA; Müller J; Schröder P Chemosphere; 2015 Sep; 134():307-12. PubMed ID: 25966936 [TBL] [Abstract][Full Text] [Related]
8. Assessing nutrient responses and biomass quality for selection of appropriate paludiculture crops. Ren L; Eller F; Lambertini C; Guo WY; Brix H; Sorrell BK Sci Total Environ; 2019 May; 664():1150-1161. PubMed ID: 30901787 [TBL] [Abstract][Full Text] [Related]
9. Role of extrinsic arbuscular mycorrhizal fungi in heavy metal-contaminated wetlands with various soil moisture levels. Zheng S; Wang C; Shen Z; Quan Y; Liu X Int J Phytoremediation; 2015; 17(1-6):208-14. PubMed ID: 25397977 [TBL] [Abstract][Full Text] [Related]
10. Mercury accumulation and biotransportation in wetland biota affected by gold mining. Mbanga O; Ncube S; Tutu H; Chimuka L; Cukrowska E Environ Monit Assess; 2019 Feb; 191(3):186. PubMed ID: 30806796 [TBL] [Abstract][Full Text] [Related]
11. Post-remediation use of macrophytes as composting materials for sustainable management of a sanitary landfill. Song U Int J Phytoremediation; 2017 Apr; 19(4):395-401. PubMed ID: 27739869 [TBL] [Abstract][Full Text] [Related]
12. Nitrate removal from eutrophic wetlands polluted by metal-mine wastes: effects of liming and plant growth. González-Alcaraz MN; Conesa HM; Álvarez-Rogel J J Environ Manage; 2013 Oct; 128():964-72. PubMed ID: 23892281 [TBL] [Abstract][Full Text] [Related]
13. Treatment of industrial wastewater with two-stage constructed wetlands planted with Typha latifolia and Phragmites australis. Calheiros CS; Rangel AO; Castro PM Bioresour Technol; 2009 Jul; 100(13):3205-13. PubMed ID: 19289277 [TBL] [Abstract][Full Text] [Related]
14. Nutrient removal potential and biomass production by Phragmites australis and Typha latifolia on European rewetted peat and mineral soils. Geurts JJM; Oehmke C; Lambertini C; Eller F; Sorrell BK; Mandiola SR; Grootjans AP; Brix H; Wichtmann W; Lamers LPM; Fritz C Sci Total Environ; 2020 Dec; 747():141102. PubMed ID: 32795788 [TBL] [Abstract][Full Text] [Related]
15. The phytoremediation ability of a polyculture constructed wetland to treat boron from mine effluent. Türker OC; Böcük H; Yakar A J Hazard Mater; 2013 May; 252-253():132-41. PubMed ID: 23500796 [TBL] [Abstract][Full Text] [Related]
16. Nutrient removal through autumn harvest of Phragmites australis and Thypha latifolia shoots in relation to nutrient loading in a wetland system used for polishing sewage treatment plant effluent. Toet S; Bouwman M; Cevaal A; Verhoeven JT J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(6-7):1133-56. PubMed ID: 15921271 [TBL] [Abstract][Full Text] [Related]
17. [Phosphorus rhizosphere depletion effect of four aquatic plants]. Wang ZY; Wen SF; Xing BS; Gao DM; Li FM; Hu HY; Sakoda A; Sagehashi M Huan Jing Ke Xue; 2008 Sep; 29(9):2475-80. PubMed ID: 19068629 [TBL] [Abstract][Full Text] [Related]
18. Phytoremediation of selenium using subsurface-flow constructed wetland. Azaizeh H; Salhani N; Sebesvari Z; Shardendu S; Emons H Int J Phytoremediation; 2006; 8(3):187-98. PubMed ID: 17120524 [TBL] [Abstract][Full Text] [Related]
19. [Effect of iron plaque on root surfaces on phosphorus uptake of two wetland plants]. Wang ZY; Liu LH; Wen SF; Peng CS; Xing BS; Li FM Huan Jing Ke Xue; 2010 Mar; 31(3):781-6. PubMed ID: 20358843 [TBL] [Abstract][Full Text] [Related]
20. Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Calheiros CS; Rangel AO; Castro PM Water Res; 2007 Apr; 41(8):1790-8. PubMed ID: 17320926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]