These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Structure and function analysis of a type III preQ Schroeder GM; Kiliushik D; Jenkins JL; Wedekind JE J Biol Chem; 2023 Oct; 299(10):105208. PubMed ID: 37660906 [TBL] [Abstract][Full Text] [Related]
5. Structural determinants for ligand capture by a class II preQ1 riboswitch. Kang M; Eichhorn CD; Feigon J Proc Natl Acad Sci U S A; 2014 Feb; 111(6):E663-71. PubMed ID: 24469808 [TBL] [Abstract][Full Text] [Related]
6. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics. Liberman JA; Suddala KC; Aytenfisu A; Chan D; Belashov IA; Salim M; Mathews DH; Spitale RC; Walter NG; Wedekind JE Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3485-94. PubMed ID: 26106162 [TBL] [Abstract][Full Text] [Related]
7. Characterization of Engineered PreQ1 Riboswitches for Inducible Gene Regulation in Mycobacteria. Van Vlack ER; Topp S; Seeliger JC J Bacteriol; 2017 Mar; 199(6):. PubMed ID: 28069821 [TBL] [Abstract][Full Text] [Related]
8. Nucleobase mutants of a bacterial preQ Dutta D; Wedekind JE J Biol Chem; 2020 Feb; 295(9):2555-2567. PubMed ID: 31659117 [TBL] [Abstract][Full Text] [Related]
9. Synergistic Allosteric Mechanism of Fructose-1,6-bisphosphate and Serine for Pyruvate Kinase M2 via Dynamics Fluctuation Network Analysis. Yang J; Liu H; Liu X; Gu C; Luo R; Chen HF J Chem Inf Model; 2016 Jun; 56(6):1184-1192. PubMed ID: 27227511 [TBL] [Abstract][Full Text] [Related]
10. Molecular dynamics simulation on the allosteric analysis of the c-di-GMP class I riboswitch induced by ligand binding. Li C; Zhao X; Xie P; Hu J; Bi H J Mol Recognit; 2019 Jan; 32(1):e2756. PubMed ID: 30033590 [TBL] [Abstract][Full Text] [Related]
11. Conformational Dynamics of thiM Riboswitch To Understand the Gene Regulation Mechanism Using Markov State Modeling and the Residual Fluctuation Network Approach. Kesherwani M; N H V K; Velmurugan D J Chem Inf Model; 2018 Aug; 58(8):1638-1651. PubMed ID: 29939019 [TBL] [Abstract][Full Text] [Related]
12. Molecular mechanism for preQ1-II riboswitch function revealed by molecular dynamics. Aytenfisu AH; Liberman JA; Wedekind JE; Mathews DH RNA; 2015 Nov; 21(11):1898-907. PubMed ID: 26370581 [TBL] [Abstract][Full Text] [Related]
13. Hierarchical Conformational Dynamics Confers Thermal Adaptability to preQ Gong Z; Yang S; Dong X; Yang QF; Zhu YL; Xiao Y; Tang C J Mol Biol; 2020 Jul; 432(16):4523-4543. PubMed ID: 32522558 [TBL] [Abstract][Full Text] [Related]
14. A Protonated Cytidine Stabilizes the Ligand-Binding Pocket in the PreQ Rückriegel S; Hohmann KF; Fürtig B Chembiochem; 2023 Aug; 24(15):e202300228. PubMed ID: 37314020 [TBL] [Abstract][Full Text] [Related]
15. Insights into ligand binding to PreQ1 Riboswitch Aptamer from molecular dynamics simulations. Gong Z; Zhao Y; Chen C; Duan Y; Xiao Y PLoS One; 2014; 9(3):e92247. PubMed ID: 24663240 [TBL] [Abstract][Full Text] [Related]
16. Structure of a class II preQ1 riboswitch reveals ligand recognition by a new fold. Liberman JA; Salim M; Krucinska J; Wedekind JE Nat Chem Biol; 2013 Jun; 9(6):353-5. PubMed ID: 23584677 [TBL] [Abstract][Full Text] [Related]
17. Sequence-dependent folding landscapes of adenine riboswitch aptamers. Lin JC; Hyeon C; Thirumalai D Phys Chem Chem Phys; 2014 Apr; 16(14):6376-82. PubMed ID: 24366448 [TBL] [Abstract][Full Text] [Related]
19. Using simulations and kinetic network models to reveal the dynamics and functions of riboswitches. Lin JC; Yoon J; Hyeon C; Thirumalai D Methods Enzymol; 2015; 553():235-58. PubMed ID: 25726468 [TBL] [Abstract][Full Text] [Related]
20. Dynamical characterization and multiple unbinding paths of two PreQ Hu G; Zhang Y; Yu Z; Cui T; Cui W Phys Chem Chem Phys; 2023 Sep; 25(35):24004-24015. PubMed ID: 37646322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]