These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 27484759)

  • 1. Characterisation of the responsive properties of two running-specific prosthetic models.
    Grobler L; Ferreira S; Vanwanseele B; Terblanche EE
    Prosthet Orthot Int; 2017 Apr; 41(2):141-148. PubMed ID: 27484759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing the Mechanical Properties of Running-Specific Prostheses.
    Beck ON; Taboga P; Grabowski AM
    PLoS One; 2016; 11(12):e0168298. PubMed ID: 27973573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How do prosthetic stiffness, height and running speed affect the biomechanics of athletes with bilateral transtibial amputations?
    Beck ON; Taboga P; Grabowski AM
    J R Soc Interface; 2017 Jun; 14(131):. PubMed ID: 28659414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prosthetic shape, but not stiffness or height, affects the maximum speed of sprinters with bilateral transtibial amputations.
    Taboga P; Beck ON; Grabowski AM
    PLoS One; 2020; 15(2):e0229035. PubMed ID: 32078639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prosthetic model, but not stiffness or height, affects maximum running velocity in athletes with unilateral transtibial amputations.
    Taboga P; Drees EK; Beck ON; Grabowski AM
    Sci Rep; 2020 Feb; 10(1):1763. PubMed ID: 32019938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced prosthetic stiffness lowers the metabolic cost of running for athletes with bilateral transtibial amputations.
    Beck ON; Taboga P; Grabowski AM
    J Appl Physiol (1985); 2017 Apr; 122(4):976-984. PubMed ID: 28104752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prosthetic model, but not stiffness or height, affects the metabolic cost of running for athletes with unilateral transtibial amputations.
    Beck ON; Taboga P; Grabowski AM
    J Appl Physiol (1985); 2017 Jul; 123(1):38-48. PubMed ID: 28360121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of step frequency in transtibial amputee endurance athletes using a running-specific prosthesis.
    Oudenhoven LM; Boes JM; Hak L; Faber GS; Houdijk H
    J Biomech; 2017 Jan; 51():42-48. PubMed ID: 27923481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of common footwear on stance-phase mechanical properties of the prosthetic foot-shoe system.
    Major MJ; Scham J; Orendurff M
    Prosthet Orthot Int; 2018 Apr; 42(2):198-207. PubMed ID: 28486847
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of Instrumented Running Prosthetic Feet for the Collection of Track Loads on Elite Athletes.
    Petrone N; Costa G; Foscan G; Gri A; Mazzanti L; Migliore G; Cutti AG
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33050513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spring-mass behavioural adaptations to acute changes in prosthetic blade stiffness during submaximal running in unilateral transtibial prosthesis users.
    Barnett CT; De Asha AR; Skervin TK; Buckley JG; Foster RJ
    Gait Posture; 2022 Oct; 98():153-159. PubMed ID: 36126535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axial and torsional stiffness of pediatric prosthetic feet.
    Taboga P; Grabowski AM
    Clin Biomech (Bristol, Avon); 2017 Feb; 42():47-54. PubMed ID: 28095358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biomechanics of the fastest sprinter with a unilateral transtibial amputation.
    Beck ON; Grabowski AM
    J Appl Physiol (1985); 2018 Mar; 124(3):641-645. PubMed ID: 29051334
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic characterisation of Ă–ssur Flex-Run prosthetic feet for a more informed prescription.
    Noroozi S; Ong ZC; Khoo SY; Aslani N; Sewell P
    Prosthet Orthot Int; 2019 Feb; 43(1):62-70. PubMed ID: 30051756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shock absorption during transtibial amputee gait: Does longitudinal prosthetic stiffness play a role?
    Boutwell E; Stine R; Gard S
    Prosthet Orthot Int; 2017 Apr; 41(2):178-185. PubMed ID: 27117010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimising the trans-femoral prosthetic alignment for running, by lowering the knee joint.
    Burkett B; Smeathers J; Barker T
    Prosthet Orthot Int; 2001 Dec; 25(3):210-9. PubMed ID: 11860095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prosthetic foot roll-over shapes with implications for alignment of trans-tibial prostheses.
    Hansen AH; Childress DS; Knox EH
    Prosthet Orthot Int; 2000 Dec; 24(3):205-15. PubMed ID: 11195355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in lower extremity prosthetic practice.
    Trower TA
    Phys Med Rehabil Clin N Am; 2006 Feb; 17(1):23-30, v-vi. PubMed ID: 16517343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leg stiffness during sprinting in transfemoral amputees with running-specific prosthesis.
    Sano Y; Makimoto A; Hashizume S; Murai A; Kobayashi Y; Takemura H; Hobara H
    Gait Posture; 2017 Jul; 56():65-67. PubMed ID: 28505545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effect of Prosthetic Alignment on Prosthetic and Total Leg Stiffness While Running With Simulated Running-Specific Prostheses.
    Groothuis A; Houdijk H
    Front Sports Act Living; 2019; 1():16. PubMed ID: 33344940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.