BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 27484840)

  • 1. MRF4 negatively regulates adult skeletal muscle growth by repressing MEF2 activity.
    Moretti I; Ciciliot S; Dyar KA; Abraham R; Murgia M; Agatea L; Akimoto T; Bicciato S; Forcato M; Pierre P; Uhlenhaut NH; Rigby PW; Carvajal JJ; Blaauw B; Calabria E; Schiaffino S
    Nat Commun; 2016 Aug; 7():12397. PubMed ID: 27484840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal muscle mass is controlled by the MRF4-MEF2 axis.
    Schiaffino S; Dyar KA; Calabria E
    Curr Opin Clin Nutr Metab Care; 2018 May; 21(3):164-167. PubMed ID: 29389722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mirk/dyrk1B decreases the nuclear accumulation of class II histone deacetylases during skeletal muscle differentiation.
    Deng X; Ewton DZ; Mercer SE; Friedman E
    J Biol Chem; 2005 Feb; 280(6):4894-905. PubMed ID: 15546868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Denervation induces a rapid nuclear accumulation of MRF4 in mature myofibers.
    Weis J; Kaussen M; Calvo S; Buonanno A
    Dev Dyn; 2000 Jul; 218(3):438-51. PubMed ID: 10878609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CaM kinase IIdeltaC phosphorylation of 14-3-3beta in vascular smooth muscle cells: activation of class II HDAC repression.
    Ellis JJ; Valencia TG; Zeng H; Roberts LD; Deaton RA; Grant SR
    Mol Cell Biochem; 2003 Jan; 242(1-2):153-61. PubMed ID: 12619878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein kinase A-regulated assembly of a MEF2{middle dot}HDAC4 repressor complex controls c-Jun expression in vascular smooth muscle cells.
    Gordon JW; Pagiatakis C; Salma J; Du M; Andreucci JJ; Zhao J; Hou G; Perry RL; Dan Q; Courtman D; Bendeck MP; McDermott JC
    J Biol Chem; 2009 Jul; 284(28):19027-42. PubMed ID: 19389706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nuclear localization domain of the MEF2 family of transcription factors shows member-specific features and mediates the nuclear import of histone deacetylase 4.
    Borghi S; Molinari S; Razzini G; Parise F; Battini R; Ferrari S
    J Cell Sci; 2001 Dec; 114(Pt 24):4477-83. PubMed ID: 11792813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity-dependent and -independent nuclear fluxes of HDAC4 mediated by different kinases in adult skeletal muscle.
    Liu Y; Randall WR; Schneider MF
    J Cell Biol; 2005 Mar; 168(6):887-97. PubMed ID: 15767461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation.
    McKinsey TA; Zhang CL; Lu J; Olson EN
    Nature; 2000 Nov; 408(6808):106-11. PubMed ID: 11081517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The deacetylase HDAC4 controls myocyte enhancing factor-2-dependent structural gene expression in response to neural activity.
    Cohen TJ; Barrientos T; Hartman ZC; Garvey SM; Cox GA; Yao TP
    FASEB J; 2009 Jan; 23(1):99-106. PubMed ID: 18780762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2.
    Grégoire S; Xiao L; Nie J; Zhang X; Xu M; Li J; Wong J; Seto E; Yang XJ
    Mol Cell Biol; 2007 Feb; 27(4):1280-95. PubMed ID: 17158926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parathyroid hormone-related peptide represses chondrocyte hypertrophy through a protein phosphatase 2A/histone deacetylase 4/MEF2 pathway.
    Kozhemyakina E; Cohen T; Yao TP; Lassar AB
    Mol Cell Biol; 2009 Nov; 29(21):5751-62. PubMed ID: 19704004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of MEF2 by histone deacetylase 4- and SIRT1 deacetylase-mediated lysine modifications.
    Zhao X; Sternsdorf T; Bolger TA; Evans RM; Yao TP
    Mol Cell Biol; 2005 Oct; 25(19):8456-64. PubMed ID: 16166628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Galpha13 regulates MEF2-dependent gene transcription in endothelial cells: role in angiogenesis.
    Liu G; Han J; Profirovic J; Strekalova E; Voyno-Yasenetskaya TA
    Angiogenesis; 2009; 12(1):1-15. PubMed ID: 19093215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transcriptional corepressor MITR is a signal-responsive inhibitor of myogenesis.
    Zhang CL; McKinsey TA; Olson EN
    Proc Natl Acad Sci U S A; 2001 Jun; 98(13):7354-9. PubMed ID: 11390982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential localization of HDAC4 orchestrates muscle differentiation.
    Miska EA; Langley E; Wolf D; Karlsson C; Pines J; Kouzarides T
    Nucleic Acids Res; 2001 Aug; 29(16):3439-47. PubMed ID: 11504882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SREBP-1 transcription factors regulate skeletal muscle cell size by controlling protein synthesis through myogenic regulatory factors.
    Dessalle K; Euthine V; Chanon S; Delarichaudy J; Fujii I; Rome S; Vidal H; Nemoz G; Simon C; Lefai E
    PLoS One; 2012; 7(11):e50878. PubMed ID: 23226416
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential requirements for Myocyte Enhancer Factor-2 during adult myogenesis in Drosophila.
    Bryantsev AL; Baker PW; Lovato TL; Jaramillo MS; Cripps RM
    Dev Biol; 2012 Jan; 361(2):191-207. PubMed ID: 22008792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers.
    Potthoff MJ; Wu H; Arnold MA; Shelton JM; Backs J; McAnally J; Richardson JA; Bassel-Duby R; Olson EN
    J Clin Invest; 2007 Sep; 117(9):2459-67. PubMed ID: 17786239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversal of pathological cardiac hypertrophy via the MEF2-coregulator interface.
    Wei J; Joshi S; Speransky S; Crowley C; Jayathilaka N; Lei X; Wu Y; Gai D; Jain S; Hoosien M; Gao Y; Chen L; Bishopric NH
    JCI Insight; 2017 Sep; 2(17):. PubMed ID: 28878124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.