These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27485003)

  • 61. EasyCatch, a convenient, sensitive and specific CRISPR detection system for cancer gene mutations.
    Liu Y; Chen Y; Dang L; Liu Y; Huang S; Wu S; Ma P; Jiang H; Li Y; Pan Y; Wei Y; Ma X; Liu M; Ji Q; Chi T; Huang X; Wang X; Zhou F
    Mol Cancer; 2021 Dec; 20(1):157. PubMed ID: 34856977
    [No Abstract]   [Full Text] [Related]  

  • 62. Computational Discovery of Cancer Immunotherapy Targets by Intercellular CRISPR Screens.
    Yim S; Hwang W; Han N; Lee D
    Front Immunol; 2022; 13():884561. PubMed ID: 35651625
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Isolation of Specific Genomic Regions and Identification of Their Associated Molecules by Engineered DNA-Binding Molecule-Mediated Chromatin Immunoprecipitation (enChIP) Using the CRISPR System and TAL Proteins.
    Fujii H; Fujita T
    Int J Mol Sci; 2015 Sep; 16(9):21802-12. PubMed ID: 26370991
    [TBL] [Abstract][Full Text] [Related]  

  • 64. ScreenBEAM: a novel meta-analysis algorithm for functional genomics screens via Bayesian hierarchical modeling.
    Yu J; Silva J; Califano A
    Bioinformatics; 2016 Jan; 32(2):260-7. PubMed ID: 26415723
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Chronos: a cell population dynamics model of CRISPR experiments that improves inference of gene fitness effects.
    Dempster JM; Boyle I; Vazquez F; Root DE; Boehm JS; Hahn WC; Tsherniak A; McFarland JM
    Genome Biol; 2021 Dec; 22(1):343. PubMed ID: 34930405
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Robust differential expression testing for single-cell CRISPR screens at low multiplicity of infection.
    Barry T; Mason K; Roeder K; Katsevich E
    Genome Biol; 2024 May; 25(1):124. PubMed ID: 38760839
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A CRISPR Way to Identify Cancer Targets.
    Hahn WC
    N Engl J Med; 2019 Jun; 380(25):2475-2477. PubMed ID: 31216404
    [No Abstract]   [Full Text] [Related]  

  • 68. CRISPR and transposon in vivo screens for cancer drivers and therapeutic targets.
    Noorani I; Bradley A; de la Rosa J
    Genome Biol; 2020 Aug; 21(1):204. PubMed ID: 32811551
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Structural rearrangements generate cell-specific, gene-independent CRISPR-Cas9 loss of fitness effects.
    Gonçalves E; Behan FM; Louzada S; Arnol D; Stronach EA; Yang F; Yusa K; Stegle O; Iorio F; Garnett MJ
    Genome Biol; 2019 Feb; 20(1):27. PubMed ID: 30722791
    [TBL] [Abstract][Full Text] [Related]  

  • 70. In vivo T cell CRISPR screens reveal immunotherapeutic targets.
    Bradley CA
    Nat Rev Cancer; 2019 Nov; 19(11):606. PubMed ID: 31492928
    [No Abstract]   [Full Text] [Related]  

  • 71. Genome-wide pooled CRISPR screening in neurospheres.
    Abid T; Goodale AB; Kalani Z; Wyatt M; Gonzalez EM; Zhou KN; Qian K; Novikov D; Condurat AL; Bandopadhayay P; Piccioni F; Persky NS; Root DE
    Nat Protoc; 2023 Jul; 18(7):2014-2031. PubMed ID: 37286821
    [TBL] [Abstract][Full Text] [Related]  

  • 72. CRISPR takes genetic screens forward.
    Neff EP
    Lab Anim (NY); 2020 Jan; 49(1):13-16. PubMed ID: 31853027
    [No Abstract]   [Full Text] [Related]  

  • 73. Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the Connectivity Map.
    Smith I; Greenside PG; Natoli T; Lahr DL; Wadden D; Tirosh I; Narayan R; Root DE; Golub TR; Subramanian A; Doench JG
    PLoS Biol; 2017 Nov; 15(11):e2003213. PubMed ID: 29190685
    [TBL] [Abstract][Full Text] [Related]  

  • 74. How to make a better T cell: in vivo CRISPR screens have some answers.
    Villa M; Stanczak MA; Pearce EL
    Cell; 2021 Mar; 184(5):1135-1136. PubMed ID: 33667366
    [TBL] [Abstract][Full Text] [Related]  

  • 75. High-resolution mapping of cancer cell networks using co-functional interactions.
    Boyle EA; Pritchard JK; Greenleaf WJ
    Mol Syst Biol; 2018 Dec; 14(12):e8594. PubMed ID: 30573688
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Genome-wide CRISPR screens using isogenic cells reveal vulnerabilities conferred by loss of tumor suppressors.
    Feng X; Tang M; Dede M; Su D; Pei G; Jiang D; Wang C; Chen Z; Li M; Nie L; Xiong Y; Li S; Park JM; Zhang H; Huang M; Szymonowicz K; Zhao Z; Hart T; Chen J
    Sci Adv; 2022 May; 8(19):eabm6638. PubMed ID: 35559673
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Elucidating drug targets and mechanisms of action by genetic screens in mammalian cells.
    Kampmann M
    Chem Commun (Camb); 2017 Jun; 53(53):7162-7167. PubMed ID: 28487920
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Locus-Specific Genomic DNA Purification Using the CRISPR System: Methods and Applications.
    Fujita H; Fujita T; Fujii H
    CRISPR J; 2021 Apr; 4(2):290-300. PubMed ID: 33876963
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Integrative analysis of CRISPR screening data uncovers new opportunities for optimizing cancer immunotherapy.
    Li Y; Yang C; Liu Z; Du S; Can S; Zhang H; Zhang L; Huang X; Xiao Z; Li X; Fang J; Qin W; Sun C; Wang C; Chen J; Chen H
    Mol Cancer; 2022 Jan; 21(1):2. PubMed ID: 34980132
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A new era in functional genomics screens.
    Przybyla L; Gilbert LA
    Nat Rev Genet; 2022 Feb; 23(2):89-103. PubMed ID: 34545248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.