BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27485088)

  • 1. Excitation Light Dose Engineering to Reduce Photo-bleaching and Photo-toxicity.
    Boudreau C; Wee TL; Duh YR; Couto MP; Ardakani KH; Brown CM
    Sci Rep; 2016 Aug; 6():30892. PubMed ID: 27485088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimizing light exposure with the programmable array microscope.
    Caarls W; Rieger B; De Vries AH; Arndt-Jovin DJ; Jovin TM
    J Microsc; 2011 Jan; 241(1):101-10. PubMed ID: 21118211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High second harmonic generation signal from muscles and fascia pig's muscles using the two-photon laser scanning microscope.
    Reshak AH
    J Microsc; 2009 Jun; 234(3):280-6. PubMed ID: 19493106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled light-exposure microscopy reduces photobleaching and phototoxicity in fluorescence live-cell imaging.
    Hoebe RA; Van Oven CH; Gadella TW; Dhonukshe PB; Van Noorden CJ; Manders EM
    Nat Biotechnol; 2007 Feb; 25(2):249-53. PubMed ID: 17237770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative determination of the reduction of phototoxicity and photobleaching by controlled light exposure microscopy.
    Hoebe RA; Van der Voort HT; Stap J; Van Noorden CJ; Manders EM
    J Microsc; 2008 Jul; 231(Pt 1):9-20. PubMed ID: 18638185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence relaxation in 3D from diffraction-limited sources of PAGFP or sinks of EGFP created by multiphoton photoconversion.
    Calvert PD; Peet JA; Bragin A; Schiesser WE; Pugh EN
    J Microsc; 2007 Jan; 225(Pt 1):49-71. PubMed ID: 17286695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intensity correction of fluorescent confocal laser scanning microscope images by mean-weight filtering.
    Lee SC; Bajcsy P
    J Microsc; 2006 Feb; 221(Pt 2):122-36. PubMed ID: 16499551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light exposure and cell viability in fluorescence microscopy.
    Schneckenburger H; Weber P; Wagner M; Schickinger S; Richter V; Bruns T; Strauss WS; Wittig R
    J Microsc; 2012 Mar; 245(3):311-8. PubMed ID: 22126439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stroboscopic illumination using light-emitting diodes reduces phototoxicity in fluorescence cell imaging.
    Nishigaki T; Wood CD; Shiba K; Baba SA; Darszon A
    Biotechniques; 2006 Aug; 41(2):191-7. PubMed ID: 16925021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intravital imaging of green fluorescent protein using two-photon laser-scanning microscopy.
    Potter SM; Wang CM; Garrity PA; Fraser SE
    Gene; 1996; 173(1 Spec No):25-31. PubMed ID: 8707052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predictive-focus illumination for reducing photodamage in live-cell microscopy.
    Schilling Z; Frank E; Magidson V; Wason J; Lončarek J; Boyer K; Wen J; Khodjakov A
    J Microsc; 2012 May; 246(2):160-7. PubMed ID: 22429382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic evaluation of FRAP experiments performed in a confocal laser scanning microscope--part II: Multiple diffusion processes.
    Hauser GI; Seiffert S; Oppermann W
    J Microsc; 2008 Jun; 230(Pt 3):353-62. PubMed ID: 18503660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRT letter: high speed scanning has the potential to increase fluorescence yield and to reduce photobleaching.
    Borlinghaus RT
    Microsc Res Tech; 2006 Sep; 69(9):689-92. PubMed ID: 16878313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reversibly switchable fluorescence microscopy with enhanced resolution and image contrast.
    Yao J; Shcherbakova DM; Li C; Krumholz A; Lorca RA; Reinl E; England SK; Verkhusha VV; Wang LV
    J Biomed Opt; 2014 Aug; 19(8):086018. PubMed ID: 25144452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneous photobleaching in confocal microscopy caused by differences in refractive index and excitation mode.
    Van Oostveldt P; Verhaegen F; Messens K
    Cytometry; 1998 Jun; 32(2):137-46. PubMed ID: 9627227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional micro-scale strain mapping in living biological soft tissues.
    Moo EK; Sibole SC; Han SK; Herzog W
    Acta Biomater; 2018 Apr; 70():260-269. PubMed ID: 29425715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser line-scanning confocal fluorescence imaging of the photodynamic action of aluminum and zinc phthalocyanines in V79-4 Chinese hamster fibroblasts.
    Scully AD; Ostler RB; MacRobert AJ; Parker AW; de Lara C; O'Neill P; Phillips D
    Photochem Photobiol; 1998 Aug; 68(2):199-204. PubMed ID: 9723211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A line scanning confocal fluorescent microscope using a CMOS rolling shutter as an adjustable aperture.
    Mei E; Fomitchov PA; Graves R; Campion M
    J Microsc; 2012 Sep; 247(3):269-76. PubMed ID: 22906014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minimizing photobleaching during confocal microscopy of fluorescent probes bound to chromatin: role of anoxia and photon flux.
    Bernas T; Zarebski M; Dobrucki JW; Cook PR
    J Microsc; 2004 Sep; 215(Pt 3):281-96. PubMed ID: 15312193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Microscopy: Macro Language Controlling a Confocal Microscope and its External Illumination: Adaptation for Photosynthetic Organisms.
    Steinbach G; Kaňa R
    Microsc Microanal; 2016 Apr; 22(2):258-63. PubMed ID: 27050040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.