These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 27485091)

  • 1. Rationalising pK
    Xiao K; Yu H
    Phys Chem Chem Phys; 2016 Nov; 18(44):30305-30312. PubMed ID: 27485091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pKa of the general acid/base carboxyl group of a glycosidase cycles during catalysis: a 13C-NMR study of bacillus circulans xylanase.
    McIntosh LP; Hand G; Johnson PE; Joshi MD; Körner M; Plesniak LA; Ziser L; Wakarchuk WW; Withers SG
    Biochemistry; 1996 Aug; 35(31):9958-66. PubMed ID: 8756457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase.
    Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP
    J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase.
    Joshi MD; Sidhu G; Nielsen JE; Brayer GD; Withers SG; McIntosh LP
    Biochemistry; 2001 Aug; 40(34):10115-39. PubMed ID: 11513590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pKa cycling of the general acid/base in glycoside hydrolase families 33 and 34.
    Yu H; Griffiths TM
    Phys Chem Chem Phys; 2014 Mar; 16(12):5785-92. PubMed ID: 24535426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies for modulating the pH-dependent activity of a family 11 glycoside hydrolase.
    Ludwiczek ML; D'Angelo I; Yalloway GN; Brockerman JA; Okon M; Nielsen JE; Strynadka NC; Withers SG; McIntosh LP
    Biochemistry; 2013 May; 52(18):3138-56. PubMed ID: 23578322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting electrostatic interactions in Bacillus circulans xylanase through NMR-monitored pH titrations.
    McIntosh LP; Naito D; Baturin SJ; Okon M; Joshi MD; Nielsen JE
    J Biomol NMR; 2011 Sep; 51(1-2):5-19. PubMed ID: 21947911
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Positioning the acid/base catalyst in a glycosidase: studies with Bacillus circulans xylanase.
    Lawson SL; Wakarchuk WW; Withers SG
    Biochemistry; 1997 Feb; 36(8):2257-65. PubMed ID: 9047328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of glycoside hydrolysis: A comparative QM/MM molecular dynamics analysis for wild type and Y69F mutant retaining xylanases.
    Soliman ME; Pernía JJ; Greig IR; Williams IH
    Org Biomol Chem; 2009 Dec; 7(24):5236-44. PubMed ID: 20024120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abnormally high pKa of an active-site glutamic acid residue in Bacillus circulans xylanase. The role of electrostatic interactions.
    Davoodi J; Wakarchuk WW; Campbell RL; Carey PR; Surewicz WK
    Eur J Biochem; 1995 Sep; 232(3):839-43. PubMed ID: 7588724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete measurement of the pKa values of the carboxyl and imidazole groups in Bacillus circulans xylanase.
    Joshi MD; Hedberg A; McIntosh LP
    Protein Sci; 1997 Dec; 6(12):2667-70. PubMed ID: 9416621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A secondary xylan-binding site enhances the catalytic activity of a single-domain family 11 glycoside hydrolase.
    Ludwiczek ML; Heller M; Kantner T; McIntosh LP
    J Mol Biol; 2007 Oct; 373(2):337-54. PubMed ID: 17822716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the catalytic mechanism of N-acetylglucosaminidase glycoside hydrolase from Bacillus subtilis: a QM/MM study.
    Su H; Sheng X; Liu Y
    Org Biomol Chem; 2016 Apr; 14(13):3432-42. PubMed ID: 26963691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shifting pH optimum of Bacillus circulans xylanase based on molecular modeling.
    Yang JH; Park JY; Kim SH; Yoo YJ
    J Biotechnol; 2008 Feb; 133(3):294-300. PubMed ID: 18077046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating the Nucleophile of a Glycoside Hydrolase through Site-Specific Incorporation of Fluoroglutamic Acids.
    Kötzler MP; Robinson K; Chen HM; Okon M; McIntosh LP; Withers SG
    J Am Chem Soc; 2018 Jul; 140(26):8268-8276. PubMed ID: 29894173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols.
    Riccardi D; Schaefer P; Cui Q
    J Phys Chem B; 2005 Sep; 109(37):17715-33. PubMed ID: 16853267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recruitment of both uniform and differential binding energy in enzymatic catalysis: xylanases from families 10 and 11.
    Wicki J; Schloegl J; Tarling CA; Withers SG
    Biochemistry; 2007 Jun; 46(23):6996-7005. PubMed ID: 17503782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of temperature dependent and substrate-binding cleft movements in Bacillus circulans family 11 xylanase: a molecular dynamics investigation.
    Vieira DS; Degrève L; Ward RJ
    Biochim Biophys Acta; 2009 Oct; 1790(10):1301-6. PubMed ID: 19409448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of both shortening and lengthening the active site nucleophile of Bacillus circulans xylanase on catalytic activity.
    Lawson SL; Wakarchuk WW; Withers SG
    Biochemistry; 1996 Aug; 35(31):10110-8. PubMed ID: 8756474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmarking pK
    Liu Y; Patel AHG; Burger SK; Ayers PW
    J Mol Model; 2017 May; 23(5):155. PubMed ID: 28382418
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.