These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 27485160)

  • 1. Optimal Device Independent Quantum Key Distribution.
    Kamaruddin S; Shaari JS
    Sci Rep; 2016 Aug; 6():30959. PubMed ID: 27485160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Device-independent security of quantum cryptography against collective attacks.
    Acín A; Brunner N; Gisin N; Massar S; Pironio S; Scarani V
    Phys Rev Lett; 2007 Jun; 98(23):230501. PubMed ID: 17677888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. No signaling and quantum key distribution.
    Barrett J; Hardy L; Kent A
    Phys Rev Lett; 2005 Jul; 95(1):010503. PubMed ID: 16090597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinguishability and Disturbance in the Quantum Key Distribution Protocol Using the Mean Multi-Kings' Problem.
    Yoshida M; Nakayama A; Cheng J
    Entropy (Basel); 2020 Nov; 22(11):. PubMed ID: 33287043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Family of Bell-like Inequalities as Device-Independent Witnesses for Entanglement Depth.
    Liang YC; Rosset D; Bancal JD; Pütz G; Barnea TJ; Gisin N
    Phys Rev Lett; 2015 May; 114(19):190401. PubMed ID: 26024153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Randomness versus nonlocality and entanglement.
    Acín A; Massar S; Pironio S
    Phys Rev Lett; 2012 Mar; 108(10):100402. PubMed ID: 22463395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum one-time pad in the presence of an eavesdropper.
    Brandão FG; Oppenheim J
    Phys Rev Lett; 2012 Jan; 108(4):040504. PubMed ID: 22400819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Channel characteristics estimation based on a secure optical transmission system with deep neural networks.
    Wu K; Wang H; Ji Y
    Opt Express; 2022 Aug; 30(18):32391-32410. PubMed ID: 36242302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of reduced measurement independence on Bell-based randomness expansion.
    Koh DE; Hall MJ; Setiawan ; Pope JE; Marletto C; Kay A; Scarani V; Ekert A
    Phys Rev Lett; 2012 Oct; 109(16):160404. PubMed ID: 23350071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advantage Distillation for Device-Independent Quantum Key Distribution.
    Tan EY; Lim CC; Renner R
    Phys Rev Lett; 2020 Jan; 124(2):020502. PubMed ID: 32004060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entropy Bounds for Device-Independent Quantum Key Distribution with Local Bell Test.
    Tan EY; Wolf R
    Phys Rev Lett; 2024 Sep; 133(12):120803. PubMed ID: 39373423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proposal for implementing device-independent quantum key distribution based on a heralded qubit amplifier.
    Gisin N; Pironio S; Sangouard N
    Phys Rev Lett; 2010 Aug; 105(7):070501. PubMed ID: 20868025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonclassical correlations from randomly chosen local measurements.
    Liang YC; Harrigan N; Bartlett SD; Rudolph T
    Phys Rev Lett; 2010 Feb; 104(5):050401. PubMed ID: 20366749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Bell state measurement for efficient measurement-device-independent quantum key distribution using 3-dimensional quantum states.
    Jo Y; Bae K; Son W
    Sci Rep; 2019 Jan; 9(1):687. PubMed ID: 30679489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental measurement-device-independent verification of quantum steering.
    Kocsis S; Hall MJ; Bennet AJ; Saunders DJ; Pryde GJ
    Nat Commun; 2015 Jan; 6():5886. PubMed ID: 25565297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relativistic causality versus no-signaling paradigm for multi-party correlations.
    Horodecki P; Ramanathan R
    Nat Commun; 2019 Apr; 10(1):1701. PubMed ID: 30979876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasible attack on detector-device-independent quantum key distribution.
    Wei K; Liu H; Ma H; Yang X; Zhang Y; Sun Y; Xiao J; Ji Y
    Sci Rep; 2017 Mar; 7(1):449. PubMed ID: 28348408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Device-independent quantum key distribution with realistic single-photon source implementations.
    González-Ruiz EM; Rivera-Dean J; Cenni MFB; Sørensen AS; Acín A; Oudot E
    Opt Express; 2024 Apr; 32(8):13181-13196. PubMed ID: 38859295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hacking the Bell test using classical light in energy-time entanglement-based quantum key distribution.
    Jogenfors J; Elhassan AM; Ahrens J; Bourennane M; Larsson JÅ
    Sci Adv; 2015 Dec; 1(11):e1500793. PubMed ID: 26824059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards Device-Independent Information Processing on General Quantum Networks.
    Lee CM; Hoban MJ
    Phys Rev Lett; 2018 Jan; 120(2):020504. PubMed ID: 29376705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.