BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 2748518)

  • 41. Inactivation of the intestinal uptake system for beta-lactam antibiotics by diethylpyrocarbonate.
    Kramer W; Girbig F; Petzoldt E; Leipe I
    Biochim Biophys Acta; 1988 Aug; 943(2):288-96. PubMed ID: 3401482
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cloning and characterization of a rat H+/peptide cotransporter mediating absorption of beta-lactam antibiotics in the intestine and kidney.
    Saito H; Okuda M; Terada T; Sasaki S; Inui K
    J Pharmacol Exp Ther; 1995 Dec; 275(3):1631-7. PubMed ID: 8531138
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transcellular transport of oral cephalosporins in human intestinal epithelial cells, Caco-2: interaction with dipeptide transport systems in apical and basolateral membranes.
    Matsumoto S; Saito H; Inui K
    J Pharmacol Exp Ther; 1994 Aug; 270(2):498-504. PubMed ID: 8071843
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional expression of intestinal dipeptide/beta-lactam antibiotic transporter in Xenopus laevis oocytes.
    Tamai I; Tomizawa N; Kadowaki A; Terasaki T; Nakayama K; Higashida H; Tsuji A
    Biochem Pharmacol; 1994 Aug; 48(5):881-8. PubMed ID: 8093100
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transport of cefadroxil, an aminocephalosporin antibiotic, across the small intestinal brush border membrane.
    Kimura T; Yamamoto T; Ishizuka R; Sezaki H
    Biochem Pharmacol; 1985 Jan; 34(1):81-4. PubMed ID: 3966917
    [TBL] [Abstract][Full Text] [Related]  

  • 46. H+ gradient-dependent transport of aminocephalosporins in rat renal brush border membrane vesicles: role of H+/organic cation antiport system.
    Inui K; Takano M; Okano T; Hori R
    J Pharmacol Exp Ther; 1985 Apr; 233(1):181-5. PubMed ID: 2984412
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of fatty acid sucrose esters on ceftibuten transport by rat intestinal brush-border membrane vesicles.
    Koga K; Murakami M; Kawashima S
    Biol Pharm Bull; 1998 Jul; 21(7):747-51. PubMed ID: 9703261
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Purification by ceftibuten-affinity chromatography and the functional reconstitution of oligopeptide transporter(s) in rat intestinal brush-border membrane.
    Iseki K; Yonemura K; Kikuchi T; Naasani I; Sugawara M; Kobayashi M; Kohri N; Miyazaki K
    Biochim Biophys Acta; 1998 Mar; 1370(1):161-8. PubMed ID: 9518592
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modification of ceftibuten transport by the addition of non-ionic surfactants.
    Koga K; Ohyashiki T; Murakami M; Kawashima S
    Eur J Pharm Biopharm; 2000 Jan; 49(1):17-25. PubMed ID: 10613923
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Folate transport in isolated brush border membrane vesicles from rat intestine.
    Selhub J; Rosenberg IH
    J Biol Chem; 1981 May; 256(9):4489-93. PubMed ID: 7217093
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhancement of the small intestinal uptake of phenylalanylglycine via a H+/oligopeptide transport system by chemical modification with fatty acids.
    Fujita T; Morishita Y; Ito H; Kuribayashi D; Yamamoto A; Muranishi S
    Life Sci; 1997; 61(25):2455-65. PubMed ID: 9416764
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of identical binding polypeptides for cephalosporins and dipeptides in intestinal brush-border membrane vesicles by photoaffinity labeling.
    Kramer W
    Biochim Biophys Acta; 1987 Nov; 905(1):65-74. PubMed ID: 3676315
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Purification and liposomal reconstitution of the oligopeptide transport activity in rat renal cortex using ceftibuten-affinity chromatography.
    Iseki K; Naasani I; Kikuchi T; Sugawara M; Kobayashi M; Kohri N; Miyazaki K
    Biochim Biophys Acta; 1998 Jan; 1368(2):329-37. PubMed ID: 9459609
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characteristics of uptake of cefroxadine by rabbit small intestinal brush border membrane vesicles.
    Kitagawa S; Sugaya Y
    Biol Pharm Bull; 1996 Feb; 19(2):268-73. PubMed ID: 8850320
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transport of glycyl-L-proline by mouse intestinal brush-border membrane vesicles.
    Rajendran VM; Berteloot A; Ramaswamy K
    Am J Physiol; 1985 Jun; 248(6 Pt 1):G682-6. PubMed ID: 4003548
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Interaction of beta-lactam antibiotics with H+/peptide cotransporters in rat renal brush-border membranes.
    Takahashi K; Nakamura N; Terada T; Okano T; Futami T; Saito H; Inui KI
    J Pharmacol Exp Ther; 1998 Aug; 286(2):1037-42. PubMed ID: 9694966
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characteristics of cefdinir uptake by rabbit small intestinal brush-border membrane vesicles.
    Kitagawa S; Sugaya Y; Kaseda Y; Sato S
    J Pharm Pharmacol; 1997 May; 49(5):516-9. PubMed ID: 9178187
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carrier-mediated transport systems of tetraethylammonium in rat renal brush-border and basolateral membrane vesicles.
    Takano M; Inui K; Okano T; Saito H; Hori R
    Biochim Biophys Acta; 1984 Jun; 773(1):113-24. PubMed ID: 6733090
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Contribution of passive transport mechanisms to the intestinal absorption of beta-lactam antibiotics.
    Sugawara M; Saitoh H; Iseki K; Miyazaki K; Arita T
    J Pharm Pharmacol; 1990 May; 42(5):314-8. PubMed ID: 1976777
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evidence for tripeptide/H+ co-transport in rabbit renal brush-border membrane vesicles.
    Tiruppathi C; Kulanthaivel P; Ganapathy V; Leibach FH
    Biochem J; 1990 May; 268(1):27-33. PubMed ID: 2160811
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.