These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 27485201)

  • 21. Improving ready biodegradability testing of fatty amine derivatives.
    van Ginkel CG; Gancet C; Hirschen M; Galobardes M; Lemaire P; Rosenblom J
    Chemosphere; 2008 Sep; 73(4):506-10. PubMed ID: 18674795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modelling of ready biodegradability based on combined public and industrial data sources.
    Lunghini F; Marcou G; Gantzer P; Azam P; Horvath D; Van Miert E; Varnek A
    SAR QSAR Environ Res; 2020 Mar; 31(3):171-186. PubMed ID: 31858821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In silico prediction of drug-induced ototoxicity using machine learning and deep learning methods.
    Huang X; Tang F; Hua Y; Li X
    Chem Biol Drug Des; 2021 Aug; 98(2):248-257. PubMed ID: 34013639
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of ready biodegradation estimation methods for fragrance materials.
    Boethling R
    Sci Total Environ; 2014 Nov; 497-498():60-67. PubMed ID: 25119791
    [TBL] [Abstract][Full Text] [Related]  

  • 25. How accurately can we predict the melting points of drug-like compounds?
    Tetko IV; Sushko Y; Novotarskyi S; Patiny L; Kondratov I; Petrenko AE; Charochkina L; Asiri AM
    J Chem Inf Model; 2014 Dec; 54(12):3320-9. PubMed ID: 25489863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Linear and nonlinear relationships between biodegradation potential and molecular descriptors/fragments for organic pollutants and a theoretical interpretation.
    He J; Qin W; Zhang X; Wen Y; Su L; Zhao Y
    Sci Total Environ; 2013 Feb; 444():392-400. PubMed ID: 23280297
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling and insights into molecular basis of low molecular weight respiratory sensitizers.
    Cui X; Yang R; Li S; Liu J; Wu Q; Li X
    Mol Divers; 2021 May; 25(2):847-859. PubMed ID: 32166484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of biodegradability from structure: imidazoles.
    Rorije E; Germa F; Philipp B; Schink B; Beimborn DB
    SAR QSAR Environ Res; 2002 Mar; 13(1):199-204. PubMed ID: 12074388
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative Study of Multitask Toxicity Modeling on a Broad Chemical Space.
    Sosnin S; Karlov D; Tetko IV; Fedorov MV
    J Chem Inf Model; 2019 Mar; 59(3):1062-1072. PubMed ID: 30589269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting ready biodegradability of premanufacture notice chemicals.
    Boethling RS; Lynch DG; Thom GC
    Environ Toxicol Chem; 2003 Apr; 22(4):837-44. PubMed ID: 12685720
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative prediction of biodegradability, metabolite distribution and toxicity of stable metabolites.
    Dimitrov S; Breton R; Macdonald D; Walker JD; Mekenyan O
    SAR QSAR Environ Res; 2002; 13(3-4):445-55. PubMed ID: 12184386
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction-driven matched molecular pairs to interpret QSARs and aid the molecular optimization process.
    Sushko Y; Novotarskyi S; Körner R; Vogt J; Abdelaziz A; Tetko IV
    J Cheminform; 2014; 6(1):48. PubMed ID: 25544551
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Introduction of a methodology for visualization and graphical interpretation of Bayesian classification models.
    Balfer J; Bajorath J
    J Chem Inf Model; 2014 Sep; 54(9):2451-68. PubMed ID: 25137527
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probabilistic assessment of biodegradability based on metabolic pathways: catabol system.
    Jaworska J; Dimitrov S; Nikolova N; Mekenyan O
    SAR QSAR Environ Res; 2002 Mar; 13(2):307-23. PubMed ID: 12071658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of chemical biodegradability using support vector classifier optimized with differential evolution.
    Cao Q; Leung KM
    J Chem Inf Model; 2014 Sep; 54(9):2515-23. PubMed ID: 25133742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. External validation of the biodegradability prediction model CATABOL using data sets of existing and new chemicals under the Japanese Chemical Substances Control Law.
    Sakuratani Y; Yamada J; Kasai K; Noguchi Y; Nishihara T
    SAR QSAR Environ Res; 2005 Oct; 16(5):403-31. PubMed ID: 16272041
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of chemical carcinogenicity by machine learning approaches.
    Tan NX; Rao HB; Li ZR; Li XY
    SAR QSAR Environ Res; 2009; 20(1-2):27-75. PubMed ID: 19343583
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A mechanistic approach to deriving quantitative structure-activity relationship models for microbial degradation of organic compounds.
    Damborský J
    SAR QSAR Environ Res; 1996; 5(1):27-36. PubMed ID: 8640583
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of diethylene glycol and phenol biodegradability by different test methods.
    Zgajnar Gotvajn A; Zagorc-Koncan J
    Arh Hig Rada Toksikol; 2003 Sep; 54(3):189-95. PubMed ID: 14677366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.