These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 27485302)

  • 1. Computational Prediction of DrugTarget Interactions Using Chemical, Biological, and Network Features.
    Cao DS; Zhang LX; Tan GS; Xiang Z; Zeng WB; Xu QS; Chen AF
    Mol Inform; 2014 Oct; 33(10):669-81. PubMed ID: 27485302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GSRF-DTI: a framework for drug-target interaction prediction based on a drug-target pair network and representation learning on a large graph.
    Zhu Y; Ning C; Zhang N; Wang M; Zhang Y
    BMC Biol; 2024 Jul; 22(1):156. PubMed ID: 39020316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Drug-Target Interactions Based on Small Positive Samples.
    Hu P; Chan KCC; Hu Y
    Curr Protein Pept Sci; 2018; 19(5):479-487. PubMed ID: 27829343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug-target interactions and drug repositioning.
    Wu Z; Cheng F; Li J; Li W; Liu G; Tang Y
    Brief Bioinform; 2017 Mar; 18(2):333-347. PubMed ID: 26944082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of network-based approaches and machine learning algorithms for predicting drug-target interactions.
    Jung YS; Kim Y; Cho YR
    Methods; 2022 Feb; 198():19-31. PubMed ID: 34737033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DASPfind: new efficient method to predict drug-target interactions.
    Ba-Alawi W; Soufan O; Essack M; Kalnis P; Bajic VB
    J Cheminform; 2016; 8():15. PubMed ID: 26985240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Incorporating chemical sub-structures and protein evolutionary information for inferring drug-target interactions.
    Wang L; You ZH; Li LP; Yan X; Zhang W
    Sci Rep; 2020 Apr; 10(1):6641. PubMed ID: 32313024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RFDT: A Rotation Forest-based Predictor for Predicting Drug-Target Interactions Using Drug Structure and Protein Sequence Information.
    Wang L; You ZH; Chen X; Yan X; Liu G; Zhang W
    Curr Protein Pept Sci; 2018; 19(5):445-454. PubMed ID: 27842479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting drug-target interactions using restricted Boltzmann machines.
    Wang Y; Zeng J
    Bioinformatics; 2013 Jul; 29(13):i126-34. PubMed ID: 23812976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DTI-HeNE: a novel method for drug-target interaction prediction based on heterogeneous network embedding.
    Yue Y; He S
    BMC Bioinformatics; 2021 Sep; 22(1):418. PubMed ID: 34479477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of potential drug-targets by combining evolutionary information extracted from frequency profiles and molecular topological structures.
    Wang L; You ZH; Li LP; Yan X; Zhang W; Song KJ; Song CD
    Chem Biol Drug Des; 2020 Aug; 96(2):758-767. PubMed ID: 31393672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient computational method for predicting drug-target interactions using weighted extreme learning machine and speed up robot features.
    An JY; Meng FR; Yan ZJ
    BioData Min; 2021 Jan; 14(1):3. PubMed ID: 33472664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Discovery of New Drug-Target Interactions for Breast Cancer Treatment.
    Song J; Xu Z; Cao L; Wang M; Hou Y; Li K
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Machine Learning Approach for Drug-target Interaction Prediction using Wrapper Feature Selection and Class Balancing.
    Redkar S; Mondal S; Joseph A; Hareesha KS
    Mol Inform; 2020 May; 39(5):e1900062. PubMed ID: 32003548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel drug-target interactions via link prediction and network embedding.
    Amiri Souri E; Laddach R; Karagiannis SN; Papageorgiou LG; Tsoka S
    BMC Bioinformatics; 2022 Apr; 23(1):121. PubMed ID: 35379165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Computational-Based Method for Predicting Drug-Target Interactions by Using Stacked Autoencoder Deep Neural Network.
    Wang L; You ZH; Chen X; Xia SX; Liu F; Yan X; Zhou Y; Song KJ
    J Comput Biol; 2018 Mar; 25(3):361-373. PubMed ID: 28891684
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EDC-DTI: An end-to-end deep collaborative learning model based on multiple information for drug-target interactions prediction.
    Yuan Y; Zhang Y; Meng X; Liu Z; Wang B; Miao R; Zhang R; Su W; Liu L
    J Mol Graph Model; 2023 Jul; 122():108498. PubMed ID: 37126908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Drug-Target Interactions by Combining Dual-Tree Complex Wavelet Transform with Ensemble Learning Method.
    Pan J; Li LP; You ZH; Yu CQ; Ren ZH; Chen Y
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features.
    Chu Y; Kaushik AC; Wang X; Wang W; Zhang Y; Shan X; Salahub DR; Xiong Y; Wei DQ
    Brief Bioinform; 2021 Jan; 22(1):451-462. PubMed ID: 31885041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.