BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 27485394)

  • 21. Synergistic stabilization of emulsions by a mixture of surface-active nanoparticles and surfactant.
    Binks BP; Desforges A; Duff DG
    Langmuir; 2007 Jan; 23(3):1098-106. PubMed ID: 17241019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of antioxidant Pickering high internal phase emulsions (HIPEs) stabilized by protein/polysaccharide hybrid particles as potential alternative for PHOs.
    Zeng T; Wu ZL; Zhu JY; Yin SW; Tang CH; Wu LY; Yang XQ
    Food Chem; 2017 Sep; 231():122-130. PubMed ID: 28449988
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Double inversion of emulsions induced by salt concentration.
    Zhang J; Li L; Wang J; Sun H; Xu J; Sun D
    Langmuir; 2012 May; 28(17):6769-75. PubMed ID: 22475400
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phase inversion of the Pickering emulsions stabilized by plate-shaped clay particles.
    Nonomura Y; Kobayashi N
    J Colloid Interface Sci; 2009 Feb; 330(2):463-6. PubMed ID: 18992900
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of polymer latex particles decorated with organically-modified laponite clay platelets via emulsion polymerization.
    Herrera NN; Persoz S; Putaux JL; David L; Bourgeat-Lami E
    J Nanosci Nanotechnol; 2006 Feb; 6(2):421-31. PubMed ID: 16573041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Response of surfactant stabilized oil-in-water emulsions to the addition of particles in an aqueous suspension.
    Katepalli H; Bose A
    Langmuir; 2014 Nov; 30(43):12736-42. PubMed ID: 25312030
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase inversion of emulsions containing a lipophilic surfactant induced by clay concentration.
    Zhang J; Li L; Wang J; Xu J; Sun D
    Langmuir; 2013 Mar; 29(12):3889-94. PubMed ID: 23445467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Water-in-Oil Pickering Emulsions Stabilized by Synergistic Particle-Particle Interactions.
    Zembyla M; Lazidis A; Murray BS; Sarkar A
    Langmuir; 2019 Oct; 35(40):13078-13089. PubMed ID: 31525933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emulsions stabilised by whey protein microgel particles: towards food-grade Pickering emulsions.
    Destribats M; Rouvet M; Gehin-Delval C; Schmitt C; Binks BP
    Soft Matter; 2014 Sep; 10(36):6941-54. PubMed ID: 24675994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Making and breaking bridges in a Pickering emulsion.
    French DJ; Taylor P; Fowler J; Clegg PS
    J Colloid Interface Sci; 2015 Mar; 441():30-8. PubMed ID: 25490559
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stabilization of oil-in-water emulsions with graphene oxide and cobalt oxide nanosheets and preparation of armored polymer particles.
    Edgehouse K; Escamilla M; Wang L; Dent R; Pachuta K; Kendall L; Wei P; Sehirlioglu A; Pentzer E
    J Colloid Interface Sci; 2019 Apr; 541():269-278. PubMed ID: 30708243
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Macroporous polymer from core-shell particle-stabilized Pickering emulsions.
    Li Z; Ngai T
    Langmuir; 2010 Apr; 26(7):5088-92. PubMed ID: 20350011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stabilization of Pickering Emulsions with Oppositely Charged Latex Particles: Influence of Various Parameters and Particle Arrangement around Droplets.
    Nallamilli T; Binks BP; Mani E; Basavaraj MG
    Langmuir; 2015 Oct; 31(41):11200-8. PubMed ID: 26411316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. pH-Responsive Pickering emulsions stabilized solely by surface-inactive nanoparticles via an unconventional stabilization mechanism.
    Jia K; Guo Y; Yu Y; Zhang J; Yu L; Wen W; Mai Y
    Soft Matter; 2021 Mar; 17(12):3346-3357. PubMed ID: 33630989
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Effect of Particle Shell on Cooling Rates in Oil-in-Oil Magnetic Pickering Emulsions.
    Bielas R; Józefczak A
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33114760
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mixed-emulsifier stabilised emulsions: Investigation of the effect of monoolein and hydrophilic silica particle mixtures on the stability against coalescence.
    Pichot R; Spyropoulos F; Norton IT
    J Colloid Interface Sci; 2009 Jan; 329(2):284-91. PubMed ID: 18977494
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pickering Particles Prepared from Food Waste.
    Gould J; Garcia-Garcia G; Wolf B
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773909
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparative study on the capacity of a range of food-grade particles to form stable O/W and W/O Pickering emulsions.
    Duffus LJ; Norton JE; Smith P; Norton IT; Spyropoulos F
    J Colloid Interface Sci; 2016 Jul; 473():9-21. PubMed ID: 27042820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-monotonic dependence of Pickering emulsion gel rheology on particle volume fraction.
    Kaganyuk M; Mohraz A
    Soft Matter; 2017 Mar; 13(13):2513-2522. PubMed ID: 28306753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. pH-Induced reversible conversion between non-Pickering and Pickering high internal phase emulsion.
    Zhang Y; Luo P; Liu Y; Li H; Li X; Lu H; Wu Y; Liu D
    Phys Chem Chem Phys; 2022 Jul; 24(28):17121-17130. PubMed ID: 35791919
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.