These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27485418)

  • 1. Benchmarking a Wide Range of Chemical Descriptors for Drug-Target Interaction Prediction Using a Chemogenomic Approach.
    Sawada R; Kotera M; Yamanishi Y
    Mol Inform; 2014 Dec; 33(11-12):719-31. PubMed ID: 27485418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug-target interaction prediction via chemogenomic space: learning-based methods.
    Mousavian Z; Masoudi-Nejad A
    Expert Opin Drug Metab Toxicol; 2014 Sep; 10(9):1273-87. PubMed ID: 25112457
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel.
    Meslamani J; Rognan D
    J Chem Inf Model; 2011 Jul; 51(7):1593-603. PubMed ID: 21644501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear and Kernel Model Construction Methods for Predicting Drug-Target Interactions in a Chemogenomic Framework.
    Yamanishi Y
    Methods Mol Biol; 2018; 1825():355-368. PubMed ID: 30334213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of deep and shallow learning methods in chemogenomics for the prediction of drugs specificity.
    Playe B; Stoven V
    J Cheminform; 2020 Feb; 12(1):11. PubMed ID: 33431042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PyDPI: freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies.
    Cao DS; Liang YZ; Yan J; Tan GS; Xu QS; Liu S
    J Chem Inf Model; 2013 Nov; 53(11):3086-96. PubMed ID: 24047419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inferring Chemogenomic Features from Drug-Target Interaction Networks.
    Yamanishi Y
    Mol Inform; 2013 Dec; 32(11-12):991-9. PubMed ID: 27481144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kernel-based data fusion improves the drug-protein interaction prediction.
    Wang YC; Zhang CH; Deng NY; Wang Y
    Comput Biol Chem; 2011 Dec; 35(6):353-62. PubMed ID: 22099632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space.
    Koutsoukas A; Paricharak S; Galloway WR; Spring DR; Ijzerman AP; Glen RC; Marcus D; Bender A
    J Chem Inf Model; 2014 Jan; 54(1):230-42. PubMed ID: 24289493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemogenomic approaches to infer drug-target interaction networks.
    Yamanishi Y
    Methods Mol Biol; 2013; 939():97-113. PubMed ID: 23192544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemogenomic data analysis: prediction of small-molecule targets and the advent of biological fingerprint.
    Bender A; Young DW; Jenkins JL; Serrano M; Mikhailov D; Clemons PA; Davies JW
    Comb Chem High Throughput Screen; 2007 Sep; 10(8):719-31. PubMed ID: 18045083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale prediction of drug-target interactions using protein sequences and drug topological structures.
    Cao DS; Liu S; Xu QS; Lu HM; Huang JH; Hu QN; Liang YZ
    Anal Chim Acta; 2012 Nov; 752():1-10. PubMed ID: 23101647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep-Learning-Based Drug-Target Interaction Prediction.
    Wen M; Zhang Z; Niu S; Sha H; Yang R; Yun Y; Lu H
    J Proteome Res; 2017 Apr; 16(4):1401-1409. PubMed ID: 28264154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of drug-target interaction by integrating diverse heterogeneous information source with multiple kernel learning and clustering methods.
    Yan XY; Zhang SW; He CR
    Comput Biol Chem; 2019 Feb; 78():460-467. PubMed ID: 30528728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Silico Prediction of Chemical Toxicity Profile Using Local Lazy Learning.
    Lu J; Zhang P; Zou XW; Zhao XQ; Cheng KG; Zhao YL; Bi Y; Zheng MY; Luo XM
    Comb Chem High Throughput Screen; 2017; 20(4):346-353. PubMed ID: 28215144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Similarity-based machine learning methods for predicting drug-target interactions: a brief review.
    Ding H; Takigawa I; Mamitsuka H; Zhu S
    Brief Bioinform; 2014 Sep; 15(5):734-47. PubMed ID: 23933754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pred-binding: large-scale protein-ligand binding affinity prediction.
    Shar PA; Tao W; Gao S; Huang C; Li B; Zhang W; Shahen M; Zheng C; Bai Y; Wang Y
    J Enzyme Inhib Med Chem; 2016 Dec; 31(6):1443-50. PubMed ID: 26888050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting drug-target interaction for new drugs using enhanced similarity measures and super-target clustering.
    Shi JY; Yiu SM; Li Y; Leung HC; Chin FY
    Methods; 2015 Jul; 83():98-104. PubMed ID: 25957673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting activity approach based on new atoms similarity kernel function.
    Abu El-Atta AH; Moussa MI; Hassanien AE
    J Mol Graph Model; 2015 Jul; 60():55-62. PubMed ID: 26117822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drug-target interaction prediction by learning from local information and neighbors.
    Mei JP; Kwoh CK; Yang P; Li XL; Zheng J
    Bioinformatics; 2013 Jan; 29(2):238-45. PubMed ID: 23162055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.