BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 27485669)

  • 1. Relaxed selective constraints drove functional modifications in peripheral photoreception of the cavefish P. andruzzii and provide insight into the time of cave colonization.
    Calderoni L; Rota-Stabelli O; Frigato E; Panziera A; Kirchner S; Foulkes NS; Kruckenhauser L; Bertolucci C; Fuselli S
    Heredity (Edinb); 2016 Nov; 117(5):383-392. PubMed ID: 27485669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutations in blind cavefish target the light-regulated circadian clock gene, period 2.
    Ceinos RM; Frigato E; Pagano C; Fröhlich N; Negrini P; Cavallari N; Vallone D; Fuselli S; Bertolucci C; Foulkes NS
    Sci Rep; 2018 Jun; 8(1):8754. PubMed ID: 29884790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of DNA Repair Systems in Blind Cavefish during Evolution in Constant Darkness.
    Zhao H; Di Mauro G; Lungu-Mitea S; Negrini P; Guarino AM; Frigato E; Braunbeck T; Ma H; Lamparter T; Vallone D; Bertolucci C; Foulkes NS
    Curr Biol; 2018 Oct; 28(20):3229-3243.e4. PubMed ID: 30318355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception.
    Cavallari N; Frigato E; Vallone D; Fröhlich N; Lopez-Olmeda JF; Foà A; Berti R; Sánchez-Vázquez FJ; Bertolucci C; Foulkes NS
    PLoS Biol; 2011 Sep; 9(9):e1001142. PubMed ID: 21909239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Repeated evolution of circadian clock dysregulation in cavefish populations.
    Mack KL; Jaggard JB; Persons JL; Roback EY; Passow CN; Stanhope BA; Ferrufino E; Tsuchiya D; Smith SE; Slaughter BD; Kowalko J; Rohner N; Keene AC; McGaugh SE
    PLoS Genet; 2021 Jul; 17(7):e1009642. PubMed ID: 34252077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eye Degeneration and Loss of otx5b Expression in the Cavefish Sinocyclocheilus tileihornes.
    Huang Z; Titus T; Postlethwait JH; Meng F
    J Mol Evol; 2019 Sep; 87(7-8):199-208. PubMed ID: 31332479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Encephalic photoreception and phototactic response in the troglobiont Somalian blind cavefish Phreatichthys andruzzii.
    Tarttelin EE; Frigato E; Bellingham J; Di Rosa V; Berti R; Foulkes NS; Lucas RJ; Bertolucci C
    J Exp Biol; 2012 Aug; 215(Pt 16):2898-903. PubMed ID: 22837464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of ddb2 expression in blind cavefish and zebrafish reveals plasticity in the control of sunlight-induced DNA damage repair.
    Zhao H; Li H; Du J; Di Mauro G; Lungu-Mitea S; Geyer N; Vallone D; Bertolucci C; Foulkes NS
    PLoS Genet; 2021 Feb; 17(2):e1009356. PubMed ID: 33544716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Sinocyclocheilus cavefish genome provides insights into cave adaptation.
    Yang J; Chen X; Bai J; Fang D; Qiu Y; Jiang W; Yuan H; Bian C; Lu J; He S; Pan X; Zhang Y; Wang X; You X; Wang Y; Sun Y; Mao D; Liu Y; Fan G; Zhang H; Chen X; Zhang X; Zheng L; Wang J; Cheng L; Chen J; Ruan Z; Li J; Yu H; Peng C; Ma X; Xu J; He Y; Xu Z; Xu P; Wang J; Yang H; Wang J; Whitten T; Xu X; Shi Q
    BMC Biol; 2016 Jan; 14():1. PubMed ID: 26728391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for repeated loss of selective constraint in rhodopsin of amblyopsid cavefishes (Teleostei: Amblyopsidae).
    Niemiller ML; Fitzpatrick BM; Shah P; Schmitz L; Near TJ
    Evolution; 2013 Mar; 67(3):732-48. PubMed ID: 23461324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating gene flow between the blind cavefish Garra barreimiae and its conspecific surface populations.
    Kirchner S; Sattmann H; Haring E; Plan L; Victor R; Kruckenhauser L
    Sci Rep; 2017 Jul; 7(1):5130. PubMed ID: 28698621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypic plasticity as a mechanism of cave colonization and adaptation.
    Bilandžija H; Hollifield B; Steck M; Meng G; Ng M; Koch AD; Gračan R; Ćetković H; Porter ML; Renner KJ; Jeffery W
    Elife; 2020 Apr; 9():. PubMed ID: 32314737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The complex origin of Astyanax cavefish.
    Gross JB
    BMC Evol Biol; 2012 Jun; 12():105. PubMed ID: 22747496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic differentiation between cave and surface-dwelling populations of Garra barreimiae (Cyprinidae) in Oman.
    Kruckenhauser L; Haring E; Seemann R; Sattmann H
    BMC Evol Biol; 2011 Jun; 11():172. PubMed ID: 21689414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in Mc1r gene expression are associated with regressive pigmentation in Astyanax cavefish.
    Stahl BA; Gross JB
    Dev Genes Evol; 2015 Nov; 225(6):367-75. PubMed ID: 26462499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cavefishes.
    Borowsky R
    Curr Biol; 2018 Jan; 28(2):R60-R64. PubMed ID: 29374443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comparative Transcriptomic Analysis of Development in Two Astyanax Cavefish Populations.
    Stahl BA; Gross JB
    J Exp Zool B Mol Dev Evol; 2017 Sep; 328(6):515-532. PubMed ID: 28612405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cavefish and the basis for eye loss.
    Krishnan J; Rohner N
    Philos Trans R Soc Lond B Biol Sci; 2017 Feb; 372(1713):. PubMed ID: 27994128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cavefishes in Chronobiological Research: A Narrative Review.
    Pavlova VV; Krylov VV
    Clocks Sleep; 2023 Feb; 5(1):62-71. PubMed ID: 36810844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The subterranean catfish
    Perez LN; Mariluz BR; Lorena J; Liu A; Sousa MP; Martins RAP; Taylor JS; Schneider PN
    Int J Dev Biol; 2021; 65(4-5-6):245-250. PubMed ID: 33372686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.