BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 27485713)

  • 1. Uptake and Toxicity of Copper Oxide Nanoparticles in C6 Glioma Cells.
    Joshi A; Rastedt W; Faber K; Schultz AG; Bulcke F; Dringen R
    Neurochem Res; 2016 Nov; 41(11):3004-3019. PubMed ID: 27485713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron-Doping of Copper Oxide Nanoparticles Lowers Their Toxic Potential on C6 Glioma Cells.
    Joshi A; Naatz H; Faber K; Pokhrel S; Dringen R
    Neurochem Res; 2020 Apr; 45(4):809-824. PubMed ID: 31997104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake and toxicity of copper oxide nanoparticles in cultured primary brain astrocytes.
    Bulcke F; Thiel K; Dringen R
    Nanotoxicology; 2014 Nov; 8(7):775-85. PubMed ID: 23889294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake of Intact Copper Oxide Nanoparticles Causes Acute Toxicity in Cultured Glial Cells.
    Joshi A; Thiel K; Jog K; Dringen R
    Neurochem Res; 2019 Sep; 44(9):2156-2169. PubMed ID: 31414344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper oxide nanoparticles stimulate glycolytic flux and increase the cellular contents of glutathione and metallothioneins in cultured astrocytes.
    Bulcke F; Dringen R
    Neurochem Res; 2015 Jan; 40(1):15-26. PubMed ID: 25344926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii.
    Perreault F; Oukarroum A; Melegari SP; Matias WG; Popovic R
    Chemosphere; 2012 Jun; 87(11):1388-94. PubMed ID: 22445953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity.
    Wang Z; Li N; Zhao J; White JC; Qu P; Xing B
    Chem Res Toxicol; 2012 Jul; 25(7):1512-21. PubMed ID: 22686560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity of copper oxide nanoparticles to Neotropical species Ceriodaphnia silvestrii and Hyphessobrycon eques.
    Mansano AS; Souza JP; Cancino-Bernardi J; Venturini FP; Marangoni VS; Zucolotto V
    Environ Pollut; 2018 Dec; 243(Pt A):723-733. PubMed ID: 30228063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells.
    Akhtar MJ; Kumar S; Alhadlaq HA; Alrokayan SA; Abu-Salah KM; Ahamed M
    Toxicol Ind Health; 2016 May; 32(5):809-21. PubMed ID: 24311626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toxicity of Copper Oxide (CuO) Nanoparticles on Human Blood Lymphocytes.
    Assadian E; Zarei MH; Gilani AG; Farshin M; Degampanah H; Pourahmad J
    Biol Trace Elem Res; 2018 Aug; 184(2):350-357. PubMed ID: 29064010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper-based nanoparticles induce high toxicity in leukemic HL60 cells.
    Rodhe Y; Skoglund S; Odnevall Wallinder I; Potácová Z; Möller L
    Toxicol In Vitro; 2015 Oct; 29(7):1711-9. PubMed ID: 26028147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cytotoxicity and cellular mechanisms of toxicity of CuO NPs in mussel cells in vitro and comparative sensitivity with human cells.
    Katsumiti A; Thorley AJ; Arostegui I; Reip P; Valsami-Jones E; Tetley TD; Cajaraville MP
    Toxicol In Vitro; 2018 Apr; 48():146-158. PubMed ID: 29408664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper oxide nanoparticles trigger macrophage cell death with misfolding of Cu/Zn superoxide dismutase 1 (SOD1).
    Gupta G; Cappellini F; Farcal L; Gornati R; Bernardini G; Fadeel B
    Part Fibre Toxicol; 2022 May; 19(1):33. PubMed ID: 35538581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The modality of cell-particle interactions drives the toxicity of nanosized CuO and TiO₂ in human alveolar epithelial cells.
    Moschini E; Gualtieri M; Colombo M; Fascio U; Camatini M; Mantecca P
    Toxicol Lett; 2013 Oct; 222(2):102-16. PubMed ID: 23906720
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Henson TE; Navratilova J; Tennant AH; Bradham KD; Rogers KR; Hughes MF
    Nanotoxicology; 2019 Aug; 13(6):795-811. PubMed ID: 30938207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity of surface-modified copper oxide nanoparticles in a mouse macrophage cell line: Interplay of particles, surface coating and particle dissolution.
    Líbalová H; Costa PM; Olsson M; Farcal L; Ortelli S; Blosi M; Topinka J; Costa AL; Fadeel B
    Chemosphere; 2018 Apr; 196():482-493. PubMed ID: 29324388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of copper accumulation and copper-induced toxicity by antioxidants and copper chelators in cultured primary brain astrocytes.
    Bulcke F; Santofimia-Castaño P; Gonzalez-Mateos A; Dringen R
    J Trace Elem Med Biol; 2015 Oct; 32():168-76. PubMed ID: 26302925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of the lung toxicity of copper oxide nanoparticles: current status.
    Ahamed M; Akhtar MJ; Alhadlaq HA; Alrokayan SA
    Nanomedicine (Lond); 2015; 10(15):2365-77. PubMed ID: 26251192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba.
    Perreault F; Popovic R; Dewez D
    Environ Pollut; 2014 Feb; 185():219-27. PubMed ID: 24286697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro evaluation of cytotoxicity, possible alteration of apoptotic regulatory proteins, and antibacterial activity of synthesized copper oxide nanoparticles.
    Khan S; Ansari AA; Khan AA; Abdulla M; Al-Obaid O; Ahmad R
    Colloids Surf B Biointerfaces; 2017 May; 153():320-326. PubMed ID: 28285257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.