These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2748573)

  • 21. [Hydrogen exchange and proteolytic degradation of ribonuclease A. Similarities and distinctions of the kinetic mechanisms].
    Abaturov LV; Nosova NG
    Biofizika; 2007; 52(3):409-24. PubMed ID: 17633529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The estimation of glutaminyl deamidation and aspartyl cleavage rates in glucagon.
    Joshi AB; Kirsch LE
    Int J Pharm; 2004 Apr; 273(1-2):213-9. PubMed ID: 15010145
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deamidation in proteins: the crystal structure of bovine pancreatic ribonuclease with an isoaspartyl residue at position 67.
    Capasso S; Di Donato A; Esposito L; Sica F; Sorrentino G; Vitagliano L; Zagari A; Mazzarella L
    J Mol Biol; 1996 Apr; 257(3):492-6. PubMed ID: 8648618
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proline isomerization in bovine pancreatic ribonuclease A. 2. Folding conditions.
    Bhat R; Wedemeyer WJ; Scheraga HA
    Biochemistry; 2003 May; 42(19):5722-8. PubMed ID: 12741829
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalysis of the oxidative folding of bovine pancreatic ribonuclease A by protein disulfide isomerase.
    Shin HC; Scheraga HA
    J Mol Biol; 2000 Jul; 300(4):995-1003. PubMed ID: 10891284
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the RNase H cleavage kinetics and blood serum stability of the north-conformationally constrained and 2'-alkoxy modified oligonucleotides.
    Honcharenko D; Barman J; Varghese OP; Chattopadhyaya J
    Biochemistry; 2007 May; 46(19):5635-46. PubMed ID: 17411072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of redox buffer properties on the folding of a disulfide-containing protein: dependence upon pH, thiol pKa, and thiol concentration.
    Gough JD; Lees WJ
    J Biotechnol; 2005 Feb; 115(3):279-90. PubMed ID: 15639090
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative analysis of the composition of the native and scrambled ribonuclease A.
    Chang JY
    Anal Biochem; 1999 Mar; 268(1):147-50. PubMed ID: 10036174
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molten globule of bovine alpha-lactalbumin at neutral pH induced by heat, trifluoroethanol, and oleic acid: a comparative analysis by circular dichroism spectroscopy and limited proteolysis.
    Polverino de Laureto P; Frare E; Gottardo R; Fontana A
    Proteins; 2002 Nov; 49(3):385-97. PubMed ID: 12360528
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterizing the unstructured intermediates in oxidative folding.
    Narayan M; Welker E; Scheraga HA
    Biochemistry; 2003 Jun; 42(23):6947-55. PubMed ID: 12795589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural characterization of an analog of the major rate-determining disulfide folding intermediate of bovine pancreatic ribonuclease A.
    Laity JH; Lester CC; Shimotakahara S; Zimmerman DE; Montelione GT; Scheraga HA
    Biochemistry; 1997 Oct; 36(42):12683-99. PubMed ID: 9335525
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal structure of type 1 ribonuclease H from hyperthermophilic archaeon Sulfolobus tokodaii: role of arginine 118 and C-terminal anchoring.
    You DJ; Chon H; Koga Y; Takano K; Kanaya S
    Biochemistry; 2007 Oct; 46(41):11494-503. PubMed ID: 17892305
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Impact of an easily reducible disulfide bond on the oxidative folding rate of multi-disulfide-containing proteins.
    Leung HJ; Xu G; Narayan M; Scheraga HA
    J Pept Res; 2005 Jan; 65(1):47-54. PubMed ID: 15686534
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and properties of three specific active derivatives of ribonuclease A obtained by methylation of methionine residues in 8 M urea.
    Strak GR; Link TP
    Biochemistry; 1975 Jul; 14(15):4576-81. PubMed ID: 238595
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Why does ribonuclease irreversibly inactivate at high temperatures?
    Zale SE; Klibanov AM
    Biochemistry; 1986 Sep; 25(19):5432-44. PubMed ID: 3778869
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Irreversible thermoinactivation of ribonuclease-A by soft-hydrothermal processing.
    Miyamoto T; Okano S; Kasai N
    Biotechnol Prog; 2009; 25(6):1678-85. PubMed ID: 19725109
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deamidated active intermediates in the irreversible acid denaturation of ribonuclease-A.
    Manjula BN; Acharya AS; Vithayathil PJ
    Int J Pept Protein Res; 1976; 8(3):275-82. PubMed ID: 6396
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Extremely fast hydrogen exchange of ribonuclease-(1-118) as compared with native RNase A and its implication for the conformational energy state.
    Roy S; Dibello C; Taniuchi H
    Int J Pept Protein Res; 1986 Feb; 27(2):165-74. PubMed ID: 3699984
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of peptide conformation in the rate and mechanism of deamidation of asparaginyl residues.
    Lura R; Schirch V
    Biochemistry; 1988 Oct; 27(20):7671-7. PubMed ID: 3207697
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Asparagine deamidation in recombinant human lymphotoxin: hindrance by three-dimensional structures.
    Xie M; Shahrokh Z; Kadkhodayan M; Henzel WJ; Powell MF; Borchardt RT; Schowen RL
    J Pharm Sci; 2003 Apr; 92(4):869-80. PubMed ID: 12661072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.