These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 2748575)

  • 1. Structural basis of hierarchical multiple substates of a protein. III: Side chain and main chain local conformations.
    Noguti T; Go N
    Proteins; 1989; 5(2):113-24. PubMed ID: 2748575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of hierarchical multiple substates of a protein. I: Introduction.
    Noguti T; Go N
    Proteins; 1989; 5(2):97-103. PubMed ID: 2748581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of hierarchical multiple substates of a protein. IV: Rearrangements in atom packing and local deformations.
    Noguti T; Go N
    Proteins; 1989; 5(2):125-31. PubMed ID: 2748576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis of hierarchical multiple substates of a protein. II: Monte Carlo simulation of native thermal fluctuations and energy minimization.
    Noguti T; Go N
    Proteins; 1989; 5(2):104-12. PubMed ID: 2748574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of hierarchical multiple substates of a protein. V: Nonlocal deformations.
    Noguti T; Go N
    Proteins; 1989; 5(2):132-8. PubMed ID: 2748577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The loop problem in proteins: a Monte Carlo simulated annealing approach.
    Carlacci L; Englander SW
    Biopolymers; 1993 Aug; 33(8):1271-86. PubMed ID: 7689864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo minimization with thermalization for global optimization of polypeptide conformations in cartesian coordinate space.
    Caflisch A; Niederer P; Anliker M
    Proteins; 1992 Sep; 14(1):102-9. PubMed ID: 1409559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the multiple-minima problem in the conformational analysis of polypeptides. V. Application of the self-consistent electrostatic field and the electrostatically driven Monte Carlo methods to bovine pancreatic trypsin inhibitor.
    Ripoll DR; Piela L; Vásquez M; Scheraga HA
    Proteins; 1991; 10(3):188-98. PubMed ID: 1715563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A method to configure protein side-chains from the main-chain trace in homology modelling.
    Eisenmenger F; Argos P; Abagyan R
    J Mol Biol; 1993 Jun; 231(3):849-60. PubMed ID: 8515455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Empirical solvation models in the context of conformational energy searches: application to bovine pancreatic trypsin inhibitor.
    Williams RL; Vila J; Perrot G; Scheraga HA
    Proteins; 1992 Sep; 14(1):110-9. PubMed ID: 1384032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational analysis of the 20-residue membrane-bound portion of melittin by conformational space annealing.
    Lee J; Scheraga HA; Rackovsky S
    Biopolymers; 1998 Aug; 46(2):103-16. PubMed ID: 9664844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of protein side-chain conformations from local three-dimensional homology relationships.
    Laughton CA
    J Mol Biol; 1994 Jan; 235(3):1088-97. PubMed ID: 7507173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress in protein-protein docking: atomic resolution predictions in the CAPRI experiment using RosettaDock with an improved treatment of side-chain flexibility.
    Schueler-Furman O; Wang C; Baker D
    Proteins; 2005 Aug; 60(2):187-94. PubMed ID: 15981249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the multiple-minima problem in the conformational analysis of polypeptides. IV. Application of the electrostatically driven Monte Carlo method to the 20-residue membrane-bound portion of melittin.
    Ripoll DR; Scheraga HA
    Biopolymers; 1990; 30(1-2):165-76. PubMed ID: 2224048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid refinement of protein interfaces incorporating solvation: application to the docking problem.
    Jackson RM; Gabb HA; Sternberg MJ
    J Mol Biol; 1998 Feb; 276(1):265-85. PubMed ID: 9514726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Monte Carlo method for generating structures of short single-stranded DNA sequences.
    Erie DA; Breslauer KJ; Olson WK
    Biopolymers; 1993 Jan; 33(1):75-105. PubMed ID: 8427940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy and reliability of the scaling-relaxation method for loop closure: an evaluation based on extensive and multiple copy conformational samplings.
    Zheng Q; Kyle DJ
    Proteins; 1996 Feb; 24(2):209-17. PubMed ID: 8820487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining minimum energy conformations of polypeptides by dynamic programming.
    Vajda S; Delisi C
    Biopolymers; 1990 Dec; 29(14):1755-72. PubMed ID: 2207285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer modelling of the alpha-helical coiled coil: packing of side-chains in the inner core.
    Offer G; Sessions R
    J Mol Biol; 1995 Jun; 249(5):967-87. PubMed ID: 7791220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice neural network minimization. Application of neural network optimization for locating the global-minimum conformations of proteins.
    Rabow AA; Scheraga HA
    J Mol Biol; 1993 Aug; 232(4):1157-68. PubMed ID: 8371272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.