BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 27485932)

  • 1. Transformation by different oncogenes relies on specific metabolic adaptations.
    Peruzzo P; Comelli M; Di Giorgio E; Franforte E; Mavelli I; Brancolini C
    Cell Cycle; 2016 Oct; 15(19):2656-2668. PubMed ID: 27485932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype.
    de Groof AJ; te Lindert MM; van Dommelen MM; Wu M; Willemse M; Smift AL; Winer M; Oerlemans F; Pluk H; Fransen JA; Wieringa B
    Mol Cancer; 2009 Jul; 8():54. PubMed ID: 19646236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impairment of mitochondrial respiration in mouse fibroblasts by oncogenic H-RAS(Q61L).
    Yang D; Wang MT; Tang Y; Chen Y; Jiang H; Jones TT; Rao K; Brewer GJ; Singh KK; Nie D
    Cancer Biol Ther; 2010 Jan; 9(2):122-33. PubMed ID: 19923925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unscheduled HDAC4 repressive activity in human fibroblasts triggers TP53-dependent senescence and favors cell transformation.
    Paluvai H; Di Giorgio E; Brancolini C
    Mol Oncol; 2018 Dec; 12(12):2165-2181. PubMed ID: 30315623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function.
    Martinez-Outschoorn U; Sotgia F; Lisanti MP
    Semin Oncol; 2014 Apr; 41(2):195-216. PubMed ID: 24787293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression.
    Vaupel P; Schmidberger H; Mayer A
    Int J Radiat Biol; 2019 Jul; 95(7):912-919. PubMed ID: 30822194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial Complex I decrease is responsible for bioenergetic dysfunction in K-ras transformed cells.
    Baracca A; Chiaradonna F; Sgarbi G; Solaini G; Alberghina L; Lenaz G
    Biochim Biophys Acta; 2010 Feb; 1797(2):314-23. PubMed ID: 19931505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis.
    Hu Y; Lu W; Chen G; Wang P; Chen Z; Zhou Y; Ogasawara M; Trachootham D; Feng L; Pelicano H; Chiao PJ; Keating MJ; Garcia-Manero G; Huang P
    Cell Res; 2012 Feb; 22(2):399-412. PubMed ID: 21876558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of glycolytic and mitochondrial metabolism by ras.
    Chesney J; Telang S
    Curr Pharm Biotechnol; 2013; 14(3):251-60. PubMed ID: 22201601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells.
    Wu M; Neilson A; Swift AL; Moran R; Tamagnine J; Parslow D; Armistead S; Lemire K; Orrell J; Teich J; Chomicz S; Ferrick DA
    Am J Physiol Cell Physiol; 2007 Jan; 292(1):C125-36. PubMed ID: 16971499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidized ATM-mediated glycolysis enhancement in breast cancer-associated fibroblasts contributes to tumor invasion through lactate as metabolic coupling.
    Sun K; Tang S; Hou Y; Xi L; Chen Y; Yin J; Peng M; Zhao M; Cui X; Liu M
    EBioMedicine; 2019 Mar; 41():370-383. PubMed ID: 30799198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycolytic cancer associated fibroblasts promote breast cancer tumor growth, without a measurable increase in angiogenesis: evidence for stromal-epithelial metabolic coupling.
    Migneco G; Whitaker-Menezes D; Chiavarina B; Castello-Cros R; Pavlides S; Pestell RG; Fatatis A; Flomenberg N; Tsirigos A; Howell A; Martinez-Outschoorn UE; Sotgia F; Lisanti MP
    Cell Cycle; 2010 Jun; 9(12):2412-22. PubMed ID: 20562527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Warburg effect revisited: an epigenetic link between glycolysis and gastric carcinogenesis.
    Liu X; Wang X; Zhang J; Lam EK; Shin VY; Cheng AS; Yu J; Chan FK; Sung JJ; Jin HC
    Oncogene; 2010 Jan; 29(3):442-50. PubMed ID: 19881551
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting respiratory complex I to prevent the Warburg effect.
    Vatrinet R; Iommarini L; Kurelac I; De Luise M; Gasparre G; Porcelli AM
    Int J Biochem Cell Biol; 2015 Jun; 63():41-5. PubMed ID: 25668477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geranylgeranylated, but not farnesylated, RhoB suppresses Ras transformation of NIH-3T3 cells.
    Mazières J; Tillement V; Allal C; Clanet C; Bobin L; Chen Z; Sebti SM; Favre G; Pradines A
    Exp Cell Res; 2005 Apr; 304(2):354-64. PubMed ID: 15748883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation.
    Wu H; Ying M; Hu X
    Oncotarget; 2016 Jun; 7(26):40621-40629. PubMed ID: 27259254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic reprogramming in cancer cells: glycolysis, glutaminolysis, and Bcl-2 proteins as novel therapeutic targets for cancer.
    Li C; Zhang G; Zhao L; Ma Z; Chen H
    World J Surg Oncol; 2016 Jan; 14(1):15. PubMed ID: 26791262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular and Functional Characterization of Histone Deacetylase 4 (HDAC4).
    Li L; Yang XJ
    Methods Mol Biol; 2016; 1436():31-45. PubMed ID: 27246207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microscale mathematical model for metabolic symbiosis: Investigating the effects of metabolic inhibition on ATP turnover in tumors.
    Phipps C; Molavian H; Kohandel M
    J Theor Biol; 2015 Feb; 366():103-14. PubMed ID: 25433213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Converse role of class I and class IIa HDACs in the progression of atrial fibrillation.
    Zhang D; Hu X; Li J; Hoogstra-Berends F; Zhuang Q; Esteban MA; de Groot N; Henning RH; Brundel BJJM
    J Mol Cell Cardiol; 2018 Dec; 125():39-49. PubMed ID: 30321539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.